monero/external/unbound/util/alloc.c

655 lines
18 KiB
C
Raw Normal View History

2014-10-06 00:44:31 +03:00
/*
* util/alloc.c - memory allocation service.
*
* Copyright (c) 2007, NLnet Labs. All rights reserved.
*
* This software is open source.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* Redistributions of source code must retain the above copyright notice,
* this list of conditions and the following disclaimer.
*
* Redistributions in binary form must reproduce the above copyright notice,
* this list of conditions and the following disclaimer in the documentation
* and/or other materials provided with the distribution.
*
* Neither the name of the NLNET LABS nor the names of its contributors may
* be used to endorse or promote products derived from this software without
* specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED
* TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
* PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
* LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
* NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* \file
*
* This file contains memory allocation functions.
*/
#include "config.h"
#include "util/alloc.h"
#include "util/regional.h"
#include "util/data/packed_rrset.h"
#include "util/fptr_wlist.h"
/** custom size of cached regional blocks */
#define ALLOC_REG_SIZE 16384
/** number of bits for ID part of uint64, rest for number of threads. */
#define THRNUM_SHIFT 48 /* for 65k threads, 2^48 rrsets per thr. */
/** setup new special type */
static void
alloc_setup_special(alloc_special_type* t)
2014-10-06 00:44:31 +03:00
{
memset(t, 0, sizeof(*t));
lock_rw_init(&t->entry.lock);
t->entry.key = t;
}
/** prealloc some entries in the cache. To minimize contention.
* Result is 1 lock per alloc_max newly created entries.
* @param alloc: the structure to fill up.
*/
static void
prealloc_setup(struct alloc_cache* alloc)
2014-10-06 00:44:31 +03:00
{
alloc_special_type* p;
2014-10-06 00:44:31 +03:00
int i;
for(i=0; i<ALLOC_SPECIAL_MAX; i++) {
if(!(p = (alloc_special_type*)malloc(
sizeof(alloc_special_type)))) {
2014-10-06 00:44:31 +03:00
log_err("prealloc: out of memory");
return;
}
alloc_setup_special(p);
alloc_set_special_next(p, alloc->quar);
alloc->quar = p;
alloc->num_quar++;
}
}
/** prealloc region blocks */
static void
prealloc_blocks(struct alloc_cache* alloc, size_t num)
{
size_t i;
struct regional* r;
for(i=0; i<num; i++) {
r = regional_create_custom(ALLOC_REG_SIZE);
if(!r) {
log_err("prealloc blocks: out of memory");
return;
}
r->next = (char*)alloc->reg_list;
alloc->reg_list = r;
alloc->num_reg_blocks ++;
}
}
void
alloc_init(struct alloc_cache* alloc, struct alloc_cache* super,
int thread_num)
{
memset(alloc, 0, sizeof(*alloc));
alloc->super = super;
alloc->thread_num = thread_num;
alloc->next_id = (uint64_t)thread_num; /* in steps, so that type */
alloc->next_id <<= THRNUM_SHIFT; /* of *_id is used. */
alloc->last_id = 1; /* so no 64bit constants, */
alloc->last_id <<= THRNUM_SHIFT; /* or implicit 'int' ops. */
alloc->last_id -= 1; /* for compiler portability. */
alloc->last_id |= alloc->next_id;
alloc->next_id += 1; /* because id=0 is special. */
alloc->max_reg_blocks = 100;
alloc->num_reg_blocks = 0;
alloc->reg_list = NULL;
alloc->cleanup = NULL;
alloc->cleanup_arg = NULL;
if(alloc->super)
prealloc_blocks(alloc, alloc->max_reg_blocks);
if(!alloc->super) {
lock_quick_init(&alloc->lock);
lock_protect(&alloc->lock, alloc, sizeof(*alloc));
}
}
void
alloc_clear(struct alloc_cache* alloc)
{
alloc_special_type* p, *np;
2014-10-06 00:44:31 +03:00
struct regional* r, *nr;
if(!alloc)
return;
if(!alloc->super) {
lock_quick_destroy(&alloc->lock);
}
if(alloc->super && alloc->quar) {
/* push entire list into super */
p = alloc->quar;
while(alloc_special_next(p)) /* find last */
p = alloc_special_next(p);
lock_quick_lock(&alloc->super->lock);
alloc_set_special_next(p, alloc->super->quar);
alloc->super->quar = alloc->quar;
alloc->super->num_quar += alloc->num_quar;
lock_quick_unlock(&alloc->super->lock);
} else {
/* free */
p = alloc->quar;
while(p) {
np = alloc_special_next(p);
/* deinit special type */
lock_rw_destroy(&p->entry.lock);
free(p);
p = np;
}
}
alloc->quar = 0;
alloc->num_quar = 0;
r = alloc->reg_list;
while(r) {
nr = (struct regional*)r->next;
free(r);
r = nr;
}
alloc->reg_list = NULL;
alloc->num_reg_blocks = 0;
}
uint64_t
alloc_get_id(struct alloc_cache* alloc)
{
uint64_t id = alloc->next_id++;
if(id == alloc->last_id) {
log_warn("rrset alloc: out of 64bit ids. Clearing cache.");
fptr_ok(fptr_whitelist_alloc_cleanup(alloc->cleanup));
(*alloc->cleanup)(alloc->cleanup_arg);
/* start back at first number */ /* like in alloc_init*/
alloc->next_id = (uint64_t)alloc->thread_num;
alloc->next_id <<= THRNUM_SHIFT; /* in steps for comp. */
alloc->next_id += 1; /* portability. */
/* and generate new and safe id */
id = alloc->next_id++;
}
return id;
}
alloc_special_type*
2014-10-06 00:44:31 +03:00
alloc_special_obtain(struct alloc_cache* alloc)
{
alloc_special_type* p;
2014-10-06 00:44:31 +03:00
log_assert(alloc);
/* see if in local cache */
if(alloc->quar) {
p = alloc->quar;
alloc->quar = alloc_special_next(p);
alloc->num_quar--;
p->id = alloc_get_id(alloc);
return p;
}
/* see if in global cache */
if(alloc->super) {
/* could maybe grab alloc_max/2 entries in one go,
* but really, isn't that just as fast as this code? */
lock_quick_lock(&alloc->super->lock);
if((p = alloc->super->quar)) {
alloc->super->quar = alloc_special_next(p);
alloc->super->num_quar--;
}
lock_quick_unlock(&alloc->super->lock);
if(p) {
p->id = alloc_get_id(alloc);
return p;
}
}
/* allocate new */
prealloc_setup(alloc);
if(!(p = (alloc_special_type*)malloc(sizeof(alloc_special_type)))) {
2014-10-06 00:44:31 +03:00
log_err("alloc_special_obtain: out of memory");
return NULL;
}
alloc_setup_special(p);
p->id = alloc_get_id(alloc);
return p;
}
/** push mem and some more items to the super */
static void
pushintosuper(struct alloc_cache* alloc, alloc_special_type* mem)
2014-10-06 00:44:31 +03:00
{
int i;
alloc_special_type *p = alloc->quar;
2014-10-06 00:44:31 +03:00
log_assert(p);
log_assert(alloc && alloc->super &&
alloc->num_quar >= ALLOC_SPECIAL_MAX);
/* push ALLOC_SPECIAL_MAX/2 after mem */
alloc_set_special_next(mem, alloc->quar);
for(i=1; i<ALLOC_SPECIAL_MAX/2; i++) {
p = alloc_special_next(p);
}
alloc->quar = alloc_special_next(p);
alloc->num_quar -= ALLOC_SPECIAL_MAX/2;
/* dump mem+list into the super quar list */
lock_quick_lock(&alloc->super->lock);
alloc_set_special_next(p, alloc->super->quar);
alloc->super->quar = mem;
alloc->super->num_quar += ALLOC_SPECIAL_MAX/2 + 1;
lock_quick_unlock(&alloc->super->lock);
/* so 1 lock per mem+alloc/2 deletes */
}
void
alloc_special_release(struct alloc_cache* alloc, alloc_special_type* mem)
2014-10-06 00:44:31 +03:00
{
log_assert(alloc);
if(!mem)
return;
if(!alloc->super) {
lock_quick_lock(&alloc->lock); /* superalloc needs locking */
}
alloc_special_clean(mem);
if(alloc->super && alloc->num_quar >= ALLOC_SPECIAL_MAX) {
/* push it to the super structure */
pushintosuper(alloc, mem);
return;
}
alloc_set_special_next(mem, alloc->quar);
alloc->quar = mem;
alloc->num_quar++;
if(!alloc->super) {
lock_quick_unlock(&alloc->lock);
}
}
void
alloc_stats(struct alloc_cache* alloc)
{
log_info("%salloc: %d in cache, %d blocks.", alloc->super?"":"sup",
(int)alloc->num_quar, (int)alloc->num_reg_blocks);
}
size_t alloc_get_mem(struct alloc_cache* alloc)
{
alloc_special_type* p;
2014-10-06 00:44:31 +03:00
size_t s = sizeof(*alloc);
if(!alloc->super) {
lock_quick_lock(&alloc->lock); /* superalloc needs locking */
}
s += sizeof(alloc_special_type) * alloc->num_quar;
2014-10-06 00:44:31 +03:00
for(p = alloc->quar; p; p = alloc_special_next(p)) {
s += lock_get_mem(&p->entry.lock);
}
s += alloc->num_reg_blocks * ALLOC_REG_SIZE;
if(!alloc->super) {
lock_quick_unlock(&alloc->lock);
}
return s;
}
struct regional*
alloc_reg_obtain(struct alloc_cache* alloc)
{
if(alloc->num_reg_blocks > 0) {
struct regional* r = alloc->reg_list;
alloc->reg_list = (struct regional*)r->next;
r->next = NULL;
alloc->num_reg_blocks--;
return r;
}
return regional_create_custom(ALLOC_REG_SIZE);
}
void
alloc_reg_release(struct alloc_cache* alloc, struct regional* r)
{
if(alloc->num_reg_blocks >= alloc->max_reg_blocks) {
regional_destroy(r);
return;
}
if(!r) return;
regional_free_all(r);
log_assert(r->next == NULL);
r->next = (char*)alloc->reg_list;
alloc->reg_list = r;
alloc->num_reg_blocks++;
}
void
alloc_set_id_cleanup(struct alloc_cache* alloc, void (*cleanup)(void*),
void* arg)
{
alloc->cleanup = cleanup;
alloc->cleanup_arg = arg;
}
/** global debug value to keep track of total memory mallocs */
size_t unbound_mem_alloc = 0;
/** global debug value to keep track of total memory frees */
size_t unbound_mem_freed = 0;
#ifdef UNBOUND_ALLOC_STATS
/** special value to know if the memory is being tracked */
uint64_t mem_special = (uint64_t)0xfeed43327766abcdLL;
#ifdef malloc
#undef malloc
#endif
/** malloc with stats */
void *unbound_stat_malloc(size_t size)
{
void* res;
if(size == 0) size = 1;
res = malloc(size+16);
if(!res) return NULL;
unbound_mem_alloc += size;
log_info("stat %p=malloc(%u)", res+16, (unsigned)size);
memcpy(res, &size, sizeof(size));
memcpy(res+8, &mem_special, sizeof(mem_special));
return res+16;
}
#ifdef calloc
#undef calloc
#endif
2015-08-14 20:12:19 +03:00
#ifndef INT_MAX
#define INT_MAX (((int)-1)>>1)
#endif
2014-10-06 00:44:31 +03:00
/** calloc with stats */
void *unbound_stat_calloc(size_t nmemb, size_t size)
{
2015-04-02 12:16:18 +03:00
size_t s;
void* res;
if(nmemb != 0 && INT_MAX/nmemb < size)
return NULL; /* integer overflow check */
s = (nmemb*size==0)?(size_t)1:nmemb*size;
res = calloc(1, s+16);
2014-10-06 00:44:31 +03:00
if(!res) return NULL;
log_info("stat %p=calloc(%u, %u)", res+16, (unsigned)nmemb, (unsigned)size);
unbound_mem_alloc += s;
memcpy(res, &s, sizeof(s));
memcpy(res+8, &mem_special, sizeof(mem_special));
return res+16;
}
#ifdef free
#undef free
#endif
/** free with stats */
void unbound_stat_free(void *ptr)
{
size_t s;
if(!ptr) return;
if(memcmp(ptr-8, &mem_special, sizeof(mem_special)) != 0) {
free(ptr);
return;
}
ptr-=16;
memcpy(&s, ptr, sizeof(s));
log_info("stat free(%p) size %u", ptr+16, (unsigned)s);
memset(ptr+8, 0, 8);
unbound_mem_freed += s;
free(ptr);
}
#ifdef realloc
#undef realloc
#endif
/** realloc with stats */
void *unbound_stat_realloc(void *ptr, size_t size)
{
size_t cursz;
void* res;
if(!ptr) return unbound_stat_malloc(size);
if(memcmp(ptr-8, &mem_special, sizeof(mem_special)) != 0) {
return realloc(ptr, size);
}
if(size==0) {
unbound_stat_free(ptr);
return NULL;
}
ptr -= 16;
memcpy(&cursz, ptr, sizeof(cursz));
if(cursz == size) {
/* nothing changes */
return ptr;
}
res = malloc(size+16);
if(!res) return NULL;
unbound_mem_alloc += size;
unbound_mem_freed += cursz;
log_info("stat realloc(%p, %u) from %u", ptr+16, (unsigned)size, (unsigned)cursz);
if(cursz > size) {
memcpy(res+16, ptr+16, size);
} else if(size > cursz) {
memcpy(res+16, ptr+16, cursz);
}
memset(ptr+8, 0, 8);
free(ptr);
memcpy(res, &size, sizeof(size));
memcpy(res+8, &mem_special, sizeof(mem_special));
return res+16;
}
/** log to file where alloc was done */
void *unbound_stat_malloc_log(size_t size, const char* file, int line,
const char* func)
{
log_info("%s:%d %s malloc(%u)", file, line, func, (unsigned)size);
return unbound_stat_malloc(size);
}
/** log to file where alloc was done */
void *unbound_stat_calloc_log(size_t nmemb, size_t size, const char* file,
int line, const char* func)
{
log_info("%s:%d %s calloc(%u, %u)", file, line, func,
(unsigned) nmemb, (unsigned)size);
return unbound_stat_calloc(nmemb, size);
}
/** log to file where free was done */
void unbound_stat_free_log(void *ptr, const char* file, int line,
const char* func)
{
if(ptr && memcmp(ptr-8, &mem_special, sizeof(mem_special)) == 0) {
size_t s;
memcpy(&s, ptr-16, sizeof(s));
log_info("%s:%d %s free(%p) size %u",
file, line, func, ptr, (unsigned)s);
} else
log_info("%s:%d %s unmatched free(%p)", file, line, func, ptr);
unbound_stat_free(ptr);
}
/** log to file where alloc was done */
void *unbound_stat_realloc_log(void *ptr, size_t size, const char* file,
int line, const char* func)
{
log_info("%s:%d %s realloc(%p, %u)", file, line, func,
ptr, (unsigned)size);
return unbound_stat_realloc(ptr, size);
}
#endif /* UNBOUND_ALLOC_STATS */
#ifdef UNBOUND_ALLOC_LITE
#undef malloc
#undef calloc
#undef free
#undef realloc
/** length of prefix and suffix */
static size_t lite_pad = 16;
/** prefix value to check */
static char* lite_pre = "checkfront123456";
/** suffix value to check */
static char* lite_post= "checkafter123456";
void *unbound_stat_malloc_lite(size_t size, const char* file, int line,
const char* func)
{
/* [prefix .. len .. actual data .. suffix] */
void* res = malloc(size+lite_pad*2+sizeof(size_t));
if(!res) return NULL;
memmove(res, lite_pre, lite_pad);
memmove(res+lite_pad, &size, sizeof(size_t));
memset(res+lite_pad+sizeof(size_t), 0x1a, size); /* init the memory */
memmove(res+lite_pad+size+sizeof(size_t), lite_post, lite_pad);
return res+lite_pad+sizeof(size_t);
}
void *unbound_stat_calloc_lite(size_t nmemb, size_t size, const char* file,
int line, const char* func)
{
2015-04-02 12:16:18 +03:00
size_t req;
void* res;
if(nmemb != 0 && INT_MAX/nmemb < size)
return NULL; /* integer overflow check */
req = nmemb * size;
res = malloc(req+lite_pad*2+sizeof(size_t));
2014-10-06 00:44:31 +03:00
if(!res) return NULL;
memmove(res, lite_pre, lite_pad);
memmove(res+lite_pad, &req, sizeof(size_t));
memset(res+lite_pad+sizeof(size_t), 0, req);
memmove(res+lite_pad+req+sizeof(size_t), lite_post, lite_pad);
return res+lite_pad+sizeof(size_t);
}
void unbound_stat_free_lite(void *ptr, const char* file, int line,
const char* func)
{
void* real;
size_t orig = 0;
if(!ptr) return;
real = ptr-lite_pad-sizeof(size_t);
if(memcmp(real, lite_pre, lite_pad) != 0) {
log_err("free(): prefix failed %s:%d %s", file, line, func);
log_hex("prefix here", real, lite_pad);
log_hex(" should be", lite_pre, lite_pad);
fatal_exit("alloc assertion failed");
}
memmove(&orig, real+lite_pad, sizeof(size_t));
if(memcmp(real+lite_pad+orig+sizeof(size_t), lite_post, lite_pad)!=0){
log_err("free(): suffix failed %s:%d %s", file, line, func);
log_err("alloc size is %d", (int)orig);
log_hex("suffix here", real+lite_pad+orig+sizeof(size_t),
lite_pad);
log_hex(" should be", lite_post, lite_pad);
fatal_exit("alloc assertion failed");
}
memset(real, 0xdd, orig+lite_pad*2+sizeof(size_t)); /* mark it */
free(real);
}
void *unbound_stat_realloc_lite(void *ptr, size_t size, const char* file,
int line, const char* func)
{
/* always free and realloc (no growing) */
void* real, *newa;
size_t orig = 0;
if(!ptr) {
/* like malloc() */
return unbound_stat_malloc_lite(size, file, line, func);
}
if(!size) {
/* like free() */
unbound_stat_free_lite(ptr, file, line, func);
return NULL;
}
/* change allocation size and copy */
real = ptr-lite_pad-sizeof(size_t);
if(memcmp(real, lite_pre, lite_pad) != 0) {
log_err("realloc(): prefix failed %s:%d %s", file, line, func);
log_hex("prefix here", real, lite_pad);
log_hex(" should be", lite_pre, lite_pad);
fatal_exit("alloc assertion failed");
}
memmove(&orig, real+lite_pad, sizeof(size_t));
if(memcmp(real+lite_pad+orig+sizeof(size_t), lite_post, lite_pad)!=0){
log_err("realloc(): suffix failed %s:%d %s", file, line, func);
log_err("alloc size is %d", (int)orig);
log_hex("suffix here", real+lite_pad+orig+sizeof(size_t),
lite_pad);
log_hex(" should be", lite_post, lite_pad);
fatal_exit("alloc assertion failed");
}
/* new alloc and copy over */
newa = unbound_stat_malloc_lite(size, file, line, func);
if(!newa)
return NULL;
if(orig < size)
memmove(newa, ptr, orig);
else memmove(newa, ptr, size);
memset(real, 0xdd, orig+lite_pad*2+sizeof(size_t)); /* mark it */
free(real);
return newa;
}
char* unbound_strdup_lite(const char* s, const char* file, int line,
const char* func)
{
/* this routine is made to make sure strdup() uses the malloc_lite */
size_t l = strlen(s)+1;
char* n = (char*)unbound_stat_malloc_lite(l, file, line, func);
if(!n) return NULL;
memmove(n, s, l);
return n;
}
char* unbound_lite_wrapstr(char* s)
{
char* n = unbound_strdup_lite(s, __FILE__, __LINE__, __func__);
free(s);
return n;
}
#undef sldns_pkt2wire
sldns_status unbound_lite_pkt2wire(uint8_t **dest, const sldns_pkt *p,
size_t *size)
{
uint8_t* md = NULL;
size_t ms = 0;
sldns_status s = sldns_pkt2wire(&md, p, &ms);
if(md) {
*dest = unbound_stat_malloc_lite(ms, __FILE__, __LINE__,
__func__);
*size = ms;
if(!*dest) { free(md); return LDNS_STATUS_MEM_ERR; }
memcpy(*dest, md, ms);
free(md);
} else {
*dest = NULL;
*size = 0;
}
return s;
}
#undef i2d_DSA_SIG
int unbound_lite_i2d_DSA_SIG(DSA_SIG* dsasig, unsigned char** sig)
{
unsigned char* n = NULL;
int r= i2d_DSA_SIG(dsasig, &n);
if(n) {
*sig = unbound_stat_malloc_lite((size_t)r, __FILE__, __LINE__,
__func__);
if(!*sig) return -1;
memcpy(*sig, n, (size_t)r);
free(n);
return r;
}
*sig = NULL;
return r;
}
#endif /* UNBOUND_ALLOC_LITE */