mirror of
https://github.com/monero-project/monero.git
synced 2024-12-13 11:56:31 +02:00
CLSAG optimizations
This commit is contained in:
parent
82ee01699c
commit
641b08c920
@ -168,12 +168,17 @@ namespace rct {
|
|||||||
|
|
||||||
// Generate a CLSAG signature
|
// Generate a CLSAG signature
|
||||||
// See paper by Goodell et al. (https://eprint.iacr.org/2019/654)
|
// See paper by Goodell et al. (https://eprint.iacr.org/2019/654)
|
||||||
clsag CLSAG_Gen(const key &message, const keyV & P, const key & p, const keyV & C, const key & z, const unsigned int l, const multisig_kLRki *kLRki, key *mscout, key *mspout) {
|
//
|
||||||
|
// The keys are set as follows:
|
||||||
|
// P[l] == p*G
|
||||||
|
// C[l] == z*G
|
||||||
|
// C[i] == C_nonzero[i] - C_offset (for hashing purposes) for all i
|
||||||
|
clsag CLSAG_Gen(const key &message, const keyV & P, const key & p, const keyV & C, const key & z, const keyV & C_nonzero, const key & C_offset, const unsigned int l, const multisig_kLRki *kLRki, key *mscout, key *mspout) {
|
||||||
clsag sig;
|
clsag sig;
|
||||||
size_t n = P.size(); // ring size
|
size_t n = P.size(); // ring size
|
||||||
CHECK_AND_ASSERT_THROW_MES(n == C.size(), "Signing and commitment key vector sizes must match!");
|
CHECK_AND_ASSERT_THROW_MES(n == C.size(), "Signing and commitment key vector sizes must match!");
|
||||||
|
CHECK_AND_ASSERT_THROW_MES(n == C_nonzero.size(), "Signing and commitment key vector sizes must match!");
|
||||||
CHECK_AND_ASSERT_THROW_MES(l < n, "Signing index out of range!");
|
CHECK_AND_ASSERT_THROW_MES(l < n, "Signing index out of range!");
|
||||||
CHECK_AND_ASSERT_THROW_MES(scalarmultBase(z) == C[l], "C does not match z!");
|
|
||||||
CHECK_AND_ASSERT_THROW_MES((kLRki && mscout) || (!kLRki && !mscout), "Only one of kLRki/mscout is present");
|
CHECK_AND_ASSERT_THROW_MES((kLRki && mscout) || (!kLRki && !mscout), "Only one of kLRki/mscout is present");
|
||||||
CHECK_AND_ASSERT_THROW_MES((mscout && mspout) || !kLRki, "Multisig pointers are not all present");
|
CHECK_AND_ASSERT_THROW_MES((mscout && mspout) || !kLRki, "Multisig pointers are not all present");
|
||||||
|
|
||||||
@ -212,8 +217,8 @@ namespace rct {
|
|||||||
scalarmultKey(aH,H,a);
|
scalarmultKey(aH,H,a);
|
||||||
|
|
||||||
// Aggregation hashes
|
// Aggregation hashes
|
||||||
keyV mu_P_to_hash(2*n+3); // domain, I, D, P, C
|
keyV mu_P_to_hash(2*n+4); // domain, I, D, P, C, C_offset
|
||||||
keyV mu_C_to_hash(2*n+3); // domain, I, D, P, C
|
keyV mu_C_to_hash(2*n+4); // domain, I, D, P, C, C_offset
|
||||||
sc_0(mu_P_to_hash[0].bytes);
|
sc_0(mu_P_to_hash[0].bytes);
|
||||||
memcpy(mu_P_to_hash[0].bytes,config::HASH_KEY_CLSAG_AGG_0,sizeof(config::HASH_KEY_CLSAG_AGG_0)-1);
|
memcpy(mu_P_to_hash[0].bytes,config::HASH_KEY_CLSAG_AGG_0,sizeof(config::HASH_KEY_CLSAG_AGG_0)-1);
|
||||||
sc_0(mu_C_to_hash[0].bytes);
|
sc_0(mu_C_to_hash[0].bytes);
|
||||||
@ -223,40 +228,43 @@ namespace rct {
|
|||||||
mu_C_to_hash[i] = P[i-1];
|
mu_C_to_hash[i] = P[i-1];
|
||||||
}
|
}
|
||||||
for (size_t i = n+1; i < 2*n+1; ++i) {
|
for (size_t i = n+1; i < 2*n+1; ++i) {
|
||||||
mu_P_to_hash[i] = C[i-n-1];
|
mu_P_to_hash[i] = C_nonzero[i-n-1];
|
||||||
mu_C_to_hash[i] = C[i-n-1];
|
mu_C_to_hash[i] = C_nonzero[i-n-1];
|
||||||
}
|
}
|
||||||
mu_P_to_hash[2*n+1] = sig.I;
|
mu_P_to_hash[2*n+1] = sig.I;
|
||||||
mu_P_to_hash[2*n+2] = sig.D;
|
mu_P_to_hash[2*n+2] = sig.D;
|
||||||
|
mu_P_to_hash[2*n+3] = C_offset;
|
||||||
mu_C_to_hash[2*n+1] = sig.I;
|
mu_C_to_hash[2*n+1] = sig.I;
|
||||||
mu_C_to_hash[2*n+2] = sig.D;
|
mu_C_to_hash[2*n+2] = sig.D;
|
||||||
|
mu_C_to_hash[2*n+3] = C_offset;
|
||||||
key mu_P, mu_C;
|
key mu_P, mu_C;
|
||||||
mu_P = hash_to_scalar(mu_P_to_hash);
|
mu_P = hash_to_scalar(mu_P_to_hash);
|
||||||
mu_C = hash_to_scalar(mu_C_to_hash);
|
mu_C = hash_to_scalar(mu_C_to_hash);
|
||||||
|
|
||||||
// Initial commitment
|
// Initial commitment
|
||||||
keyV c_to_hash(2*n+4); // domain, P, C, message, aG, aH
|
keyV c_to_hash(2*n+5); // domain, P, C, C_offset, message, aG, aH
|
||||||
key c;
|
key c;
|
||||||
sc_0(c_to_hash[0].bytes);
|
sc_0(c_to_hash[0].bytes);
|
||||||
memcpy(c_to_hash[0].bytes,config::HASH_KEY_CLSAG_ROUND,sizeof(config::HASH_KEY_CLSAG_ROUND)-1);
|
memcpy(c_to_hash[0].bytes,config::HASH_KEY_CLSAG_ROUND,sizeof(config::HASH_KEY_CLSAG_ROUND)-1);
|
||||||
for (size_t i = 1; i < n+1; ++i)
|
for (size_t i = 1; i < n+1; ++i)
|
||||||
{
|
{
|
||||||
c_to_hash[i] = P[i-1];
|
c_to_hash[i] = P[i-1];
|
||||||
c_to_hash[i+n] = C[i-1];
|
c_to_hash[i+n] = C_nonzero[i-1];
|
||||||
}
|
}
|
||||||
c_to_hash[2*n+1] = message;
|
c_to_hash[2*n+1] = C_offset;
|
||||||
|
c_to_hash[2*n+2] = message;
|
||||||
|
|
||||||
// Multisig data is present
|
// Multisig data is present
|
||||||
if (kLRki)
|
if (kLRki)
|
||||||
{
|
{
|
||||||
a = kLRki->k;
|
a = kLRki->k;
|
||||||
c_to_hash[2*n+2] = kLRki->L;
|
c_to_hash[2*n+3] = kLRki->L;
|
||||||
c_to_hash[2*n+3] = kLRki->R;
|
c_to_hash[2*n+4] = kLRki->R;
|
||||||
}
|
}
|
||||||
else
|
else
|
||||||
{
|
{
|
||||||
c_to_hash[2*n+2] = aG;
|
c_to_hash[2*n+3] = aG;
|
||||||
c_to_hash[2*n+3] = aH;
|
c_to_hash[2*n+4] = aH;
|
||||||
}
|
}
|
||||||
c = hash_to_scalar(c_to_hash);
|
c = hash_to_scalar(c_to_hash);
|
||||||
|
|
||||||
@ -295,8 +303,8 @@ namespace rct {
|
|||||||
ge_dsm_precomp(H_precomp.k, &Hi_p3);
|
ge_dsm_precomp(H_precomp.k, &Hi_p3);
|
||||||
addKeys_aAbBcC(R,sig.s[i],H_precomp.k,c_p,I_precomp.k,c_c,D_precomp.k);
|
addKeys_aAbBcC(R,sig.s[i],H_precomp.k,c_p,I_precomp.k,c_c,D_precomp.k);
|
||||||
|
|
||||||
c_to_hash[2*n+2] = L;
|
c_to_hash[2*n+3] = L;
|
||||||
c_to_hash[2*n+3] = R;
|
c_to_hash[2*n+4] = R;
|
||||||
c_new = hash_to_scalar(c_to_hash);
|
c_new = hash_to_scalar(c_to_hash);
|
||||||
copy(c,c_new);
|
copy(c,c_new);
|
||||||
|
|
||||||
@ -320,99 +328,8 @@ namespace rct {
|
|||||||
return sig;
|
return sig;
|
||||||
}
|
}
|
||||||
|
|
||||||
clsag CLSAG_Gen(const key &message, const keyV & P, const key & p, const keyV & C, const key & z, const unsigned int l) {
|
clsag CLSAG_Gen(const key &message, const keyV & P, const key & p, const keyV & C, const key & z, const keyV & C_nonzero, const key & C_offset, const unsigned int l) {
|
||||||
return CLSAG_Gen(message, P, p, C, z, l, NULL, NULL, NULL);
|
return CLSAG_Gen(message, P, p, C, z, C_nonzero, C_offset, l, NULL, NULL, NULL);
|
||||||
}
|
|
||||||
|
|
||||||
// Verify a CLSAG signature
|
|
||||||
// See paper by Goodell et al. (https://eprint.iacr.org/2019/654)
|
|
||||||
bool CLSAG_Ver(const key &message, const keyV & P, const keyV & C, const clsag & sig)
|
|
||||||
{
|
|
||||||
size_t n = P.size(); // ring size
|
|
||||||
CHECK_AND_ASSERT_MES(n == C.size(), false, "Signing and commitment key vector sizes must match!");
|
|
||||||
CHECK_AND_ASSERT_MES(n == sig.s.size(), false, "Signature scalar vector is the wrong size!");
|
|
||||||
for (size_t i = 0; i < n; ++i)
|
|
||||||
CHECK_AND_ASSERT_MES(sc_check(sig.s[i].bytes) == 0, false, "Bad signature scalar!");
|
|
||||||
CHECK_AND_ASSERT_MES(sc_check(sig.c1.bytes) == 0, false, "Bad signature commitment!");
|
|
||||||
|
|
||||||
key c = copy(sig.c1);
|
|
||||||
key D_8 = scalarmult8(sig.D);
|
|
||||||
geDsmp I_precomp;
|
|
||||||
geDsmp D_precomp;
|
|
||||||
precomp(I_precomp.k,sig.I);
|
|
||||||
precomp(D_precomp.k,D_8);
|
|
||||||
|
|
||||||
// Aggregation hashes
|
|
||||||
keyV mu_P_to_hash(2*n+3); // domain, I, D, P, C
|
|
||||||
keyV mu_C_to_hash(2*n+3); // domain, I, D, P, C
|
|
||||||
sc_0(mu_P_to_hash[0].bytes);
|
|
||||||
memcpy(mu_P_to_hash[0].bytes,config::HASH_KEY_CLSAG_AGG_0,sizeof(config::HASH_KEY_CLSAG_AGG_0)-1);
|
|
||||||
sc_0(mu_C_to_hash[0].bytes);
|
|
||||||
memcpy(mu_C_to_hash[0].bytes,config::HASH_KEY_CLSAG_AGG_1,sizeof(config::HASH_KEY_CLSAG_AGG_1)-1);
|
|
||||||
for (size_t i = 1; i < n+1; ++i) {
|
|
||||||
mu_P_to_hash[i] = P[i-1];
|
|
||||||
mu_C_to_hash[i] = P[i-1];
|
|
||||||
}
|
|
||||||
for (size_t i = n+1; i < 2*n+1; ++i) {
|
|
||||||
mu_P_to_hash[i] = C[i-n-1];
|
|
||||||
mu_C_to_hash[i] = C[i-n-1];
|
|
||||||
}
|
|
||||||
mu_P_to_hash[2*n+1] = sig.I;
|
|
||||||
mu_P_to_hash[2*n+2] = sig.D;
|
|
||||||
mu_C_to_hash[2*n+1] = sig.I;
|
|
||||||
mu_C_to_hash[2*n+2] = sig.D;
|
|
||||||
key mu_P, mu_C;
|
|
||||||
mu_P = hash_to_scalar(mu_P_to_hash);
|
|
||||||
mu_C = hash_to_scalar(mu_C_to_hash);
|
|
||||||
|
|
||||||
keyV c_to_hash(2*n+4); // domain, P, C, message, L, R
|
|
||||||
sc_0(c_to_hash[0].bytes);
|
|
||||||
memcpy(c_to_hash[0].bytes,config::HASH_KEY_CLSAG_ROUND,sizeof(config::HASH_KEY_CLSAG_ROUND)-1);
|
|
||||||
for (size_t i = 1; i < n+1; ++i)
|
|
||||||
{
|
|
||||||
c_to_hash[i] = P[i-1];
|
|
||||||
c_to_hash[i+n] = C[i-1];
|
|
||||||
}
|
|
||||||
c_to_hash[2*n+1] = message;
|
|
||||||
key c_p; // = c[i]*mu_P
|
|
||||||
key c_c; // = c[i]*mu_C
|
|
||||||
key c_new;
|
|
||||||
key L;
|
|
||||||
key R;
|
|
||||||
geDsmp P_precomp;
|
|
||||||
geDsmp C_precomp;
|
|
||||||
geDsmp H_precomp;
|
|
||||||
size_t i = 0;
|
|
||||||
ge_p3 hash8_p3;
|
|
||||||
geDsmp hash_precomp;
|
|
||||||
|
|
||||||
while (i < n) {
|
|
||||||
sc_0(c_new.bytes);
|
|
||||||
sc_mul(c_p.bytes,mu_P.bytes,c.bytes);
|
|
||||||
sc_mul(c_c.bytes,mu_C.bytes,c.bytes);
|
|
||||||
|
|
||||||
// Precompute points
|
|
||||||
precomp(P_precomp.k,P[i]);
|
|
||||||
precomp(C_precomp.k,C[i]);
|
|
||||||
|
|
||||||
// Compute L
|
|
||||||
addKeys_aGbBcC(L,sig.s[i],c_p,P_precomp.k,c_c,C_precomp.k);
|
|
||||||
|
|
||||||
// Compute R
|
|
||||||
hash_to_p3(hash8_p3,P[i]);
|
|
||||||
ge_dsm_precomp(hash_precomp.k, &hash8_p3);
|
|
||||||
addKeys_aAbBcC(R,sig.s[i],hash_precomp.k,c_p,I_precomp.k,c_c,D_precomp.k);
|
|
||||||
|
|
||||||
c_to_hash[2*n+2] = L;
|
|
||||||
c_to_hash[2*n+3] = R;
|
|
||||||
c_new = hash_to_scalar(c_to_hash);
|
|
||||||
CHECK_AND_ASSERT_MES(!(c_new == rct::zero()), false, "Bad signature hash");
|
|
||||||
copy(c,c_new);
|
|
||||||
|
|
||||||
i = i + 1;
|
|
||||||
}
|
|
||||||
sc_sub(c_new.bytes,c.bytes,sig.c1.bytes);
|
|
||||||
return sc_isnonzero(c_new.bytes) == 0;
|
|
||||||
}
|
}
|
||||||
|
|
||||||
// MLSAG signatures
|
// MLSAG signatures
|
||||||
@ -816,12 +733,14 @@ namespace rct {
|
|||||||
size_t i;
|
size_t i;
|
||||||
keyM M(cols, tmp);
|
keyM M(cols, tmp);
|
||||||
|
|
||||||
keyV P, C;
|
keyV P, C, C_nonzero;
|
||||||
P.reserve(pubs.size());
|
P.reserve(pubs.size());
|
||||||
C.reserve(pubs.size());
|
C.reserve(pubs.size());
|
||||||
|
C_nonzero.reserve(pubs.size());
|
||||||
for (const ctkey &k: pubs)
|
for (const ctkey &k: pubs)
|
||||||
{
|
{
|
||||||
P.push_back(k.dest);
|
P.push_back(k.dest);
|
||||||
|
C_nonzero.push_back(k.mask);
|
||||||
rct::key tmp;
|
rct::key tmp;
|
||||||
subKeys(tmp, k.mask, Cout);
|
subKeys(tmp, k.mask, Cout);
|
||||||
C.push_back(tmp);
|
C.push_back(tmp);
|
||||||
@ -829,7 +748,7 @@ namespace rct {
|
|||||||
|
|
||||||
sk[0] = copy(inSk.dest);
|
sk[0] = copy(inSk.dest);
|
||||||
sc_sub(sk[1].bytes, inSk.mask.bytes, a.bytes);
|
sc_sub(sk[1].bytes, inSk.mask.bytes, a.bytes);
|
||||||
clsag result = CLSAG_Gen(message, P, sk[0], C, sk[1], index, kLRki, mscout, mspout);
|
clsag result = CLSAG_Gen(message, P, sk[0], C, sk[1], C_nonzero, Cout, index, kLRki, mscout, mspout);
|
||||||
memwipe(sk.data(), sk.size() * sizeof(key));
|
memwipe(sk.data(), sk.size() * sizeof(key));
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
@ -913,29 +832,116 @@ namespace rct {
|
|||||||
catch (...) { return false; }
|
catch (...) { return false; }
|
||||||
}
|
}
|
||||||
|
|
||||||
bool verRctCLSAGSimple(const key &message, const clsag &clsag, const ctkeyV & pubs, const key & C) {
|
bool verRctCLSAGSimple(const key &message, const clsag &sig, const ctkeyV & pubs, const key & C_offset) {
|
||||||
try
|
try
|
||||||
{
|
{
|
||||||
PERF_TIMER(verRctCLSAGSimple);
|
PERF_TIMER(verRctCLSAGSimple);
|
||||||
//setup vars
|
const size_t n = pubs.size();
|
||||||
const size_t cols = pubs.size();
|
|
||||||
CHECK_AND_ASSERT_MES(cols >= 1, false, "Empty pubs");
|
// Check data
|
||||||
keyV Pi(cols), Ci(cols);
|
CHECK_AND_ASSERT_MES(n >= 1, false, "Empty pubs");
|
||||||
ge_p3 Cp3;
|
CHECK_AND_ASSERT_MES(n == sig.s.size(), false, "Signature scalar vector is the wrong size!");
|
||||||
CHECK_AND_ASSERT_MES_L1(ge_frombytes_vartime(&Cp3, C.bytes) == 0, false, "point conv failed");
|
for (size_t i = 0; i < n; ++i)
|
||||||
ge_cached Ccached;
|
CHECK_AND_ASSERT_MES(sc_check(sig.s[i].bytes) == 0, false, "Bad signature scalar!");
|
||||||
ge_p3_to_cached(&Ccached, &Cp3);
|
CHECK_AND_ASSERT_MES(sc_check(sig.c1.bytes) == 0, false, "Bad signature commitment!");
|
||||||
ge_p1p1 p1;
|
CHECK_AND_ASSERT_MES(!(sig.I == rct::identity()), false, "Bad key image!");
|
||||||
//create the matrix to mg sig
|
|
||||||
for (size_t i = 0; i < cols; i++) {
|
// Cache commitment offset for efficient subtraction later
|
||||||
Pi[i] = pubs[i].dest;
|
ge_p3 C_offset_p3;
|
||||||
ge_p3 p3;
|
CHECK_AND_ASSERT_MES(ge_frombytes_vartime(&C_offset_p3, C_offset.bytes) == 0, false, "point conv failed");
|
||||||
CHECK_AND_ASSERT_MES_L1(ge_frombytes_vartime(&p3, pubs[i].mask.bytes) == 0, false, "point conv failed");
|
ge_cached C_offset_cached;
|
||||||
ge_sub(&p1, &p3, &Ccached);
|
ge_p3_to_cached(&C_offset_cached, &C_offset_p3);
|
||||||
ge_p1p1_to_p3(&p3, &p1);
|
|
||||||
ge_p3_tobytes(Ci[i].bytes, &p3);
|
// Prepare key images
|
||||||
|
key c = copy(sig.c1);
|
||||||
|
key D_8 = scalarmult8(sig.D);
|
||||||
|
CHECK_AND_ASSERT_MES(!(D_8 == rct::identity()), false, "Bad auxiliary key image!");
|
||||||
|
geDsmp I_precomp;
|
||||||
|
geDsmp D_precomp;
|
||||||
|
precomp(I_precomp.k,sig.I);
|
||||||
|
precomp(D_precomp.k,D_8);
|
||||||
|
|
||||||
|
// Aggregation hashes
|
||||||
|
keyV mu_P_to_hash(2*n+4); // domain, I, D, P, C, C_offset
|
||||||
|
keyV mu_C_to_hash(2*n+4); // domain, I, D, P, C, C_offset
|
||||||
|
sc_0(mu_P_to_hash[0].bytes);
|
||||||
|
memcpy(mu_P_to_hash[0].bytes,config::HASH_KEY_CLSAG_AGG_0,sizeof(config::HASH_KEY_CLSAG_AGG_0)-1);
|
||||||
|
sc_0(mu_C_to_hash[0].bytes);
|
||||||
|
memcpy(mu_C_to_hash[0].bytes,config::HASH_KEY_CLSAG_AGG_1,sizeof(config::HASH_KEY_CLSAG_AGG_1)-1);
|
||||||
|
for (size_t i = 1; i < n+1; ++i) {
|
||||||
|
mu_P_to_hash[i] = pubs[i-1].dest;
|
||||||
|
mu_C_to_hash[i] = pubs[i-1].dest;
|
||||||
}
|
}
|
||||||
return CLSAG_Ver(message, Pi, Ci, clsag);
|
for (size_t i = n+1; i < 2*n+1; ++i) {
|
||||||
|
mu_P_to_hash[i] = pubs[i-n-1].mask;
|
||||||
|
mu_C_to_hash[i] = pubs[i-n-1].mask;
|
||||||
|
}
|
||||||
|
mu_P_to_hash[2*n+1] = sig.I;
|
||||||
|
mu_P_to_hash[2*n+2] = sig.D;
|
||||||
|
mu_P_to_hash[2*n+3] = C_offset;
|
||||||
|
mu_C_to_hash[2*n+1] = sig.I;
|
||||||
|
mu_C_to_hash[2*n+2] = sig.D;
|
||||||
|
mu_C_to_hash[2*n+3] = C_offset;
|
||||||
|
key mu_P, mu_C;
|
||||||
|
mu_P = hash_to_scalar(mu_P_to_hash);
|
||||||
|
mu_C = hash_to_scalar(mu_C_to_hash);
|
||||||
|
|
||||||
|
// Set up round hash
|
||||||
|
keyV c_to_hash(2*n+5); // domain, P, C, C_offset, message, L, R
|
||||||
|
sc_0(c_to_hash[0].bytes);
|
||||||
|
memcpy(c_to_hash[0].bytes,config::HASH_KEY_CLSAG_ROUND,sizeof(config::HASH_KEY_CLSAG_ROUND)-1);
|
||||||
|
for (size_t i = 1; i < n+1; ++i)
|
||||||
|
{
|
||||||
|
c_to_hash[i] = pubs[i-1].dest;
|
||||||
|
c_to_hash[i+n] = pubs[i-1].mask;
|
||||||
|
}
|
||||||
|
c_to_hash[2*n+1] = C_offset;
|
||||||
|
c_to_hash[2*n+2] = message;
|
||||||
|
key c_p; // = c[i]*mu_P
|
||||||
|
key c_c; // = c[i]*mu_C
|
||||||
|
key c_new;
|
||||||
|
key L;
|
||||||
|
key R;
|
||||||
|
geDsmp P_precomp;
|
||||||
|
geDsmp C_precomp;
|
||||||
|
geDsmp H_precomp;
|
||||||
|
size_t i = 0;
|
||||||
|
ge_p3 hash8_p3;
|
||||||
|
geDsmp hash_precomp;
|
||||||
|
ge_p3 temp_p3;
|
||||||
|
ge_p1p1 temp_p1;
|
||||||
|
|
||||||
|
while (i < n) {
|
||||||
|
sc_0(c_new.bytes);
|
||||||
|
sc_mul(c_p.bytes,mu_P.bytes,c.bytes);
|
||||||
|
sc_mul(c_c.bytes,mu_C.bytes,c.bytes);
|
||||||
|
|
||||||
|
// Precompute points for L/R
|
||||||
|
precomp(P_precomp.k,pubs[i].dest);
|
||||||
|
|
||||||
|
CHECK_AND_ASSERT_MES(ge_frombytes_vartime(&temp_p3, pubs[i].mask.bytes) == 0, false, "point conv failed");
|
||||||
|
ge_sub(&temp_p1,&temp_p3,&C_offset_cached);
|
||||||
|
ge_p1p1_to_p3(&temp_p3,&temp_p1);
|
||||||
|
ge_dsm_precomp(C_precomp.k,&temp_p3);
|
||||||
|
|
||||||
|
// Compute L
|
||||||
|
addKeys_aGbBcC(L,sig.s[i],c_p,P_precomp.k,c_c,C_precomp.k);
|
||||||
|
|
||||||
|
// Compute R
|
||||||
|
hash_to_p3(hash8_p3,pubs[i].dest);
|
||||||
|
ge_dsm_precomp(hash_precomp.k, &hash8_p3);
|
||||||
|
addKeys_aAbBcC(R,sig.s[i],hash_precomp.k,c_p,I_precomp.k,c_c,D_precomp.k);
|
||||||
|
|
||||||
|
c_to_hash[2*n+3] = L;
|
||||||
|
c_to_hash[2*n+4] = R;
|
||||||
|
c_new = hash_to_scalar(c_to_hash);
|
||||||
|
CHECK_AND_ASSERT_MES(!(c_new == rct::zero()), false, "Bad signature hash");
|
||||||
|
copy(c,c_new);
|
||||||
|
|
||||||
|
i = i + 1;
|
||||||
|
}
|
||||||
|
sc_sub(c_new.bytes,c.bytes,sig.c1.bytes);
|
||||||
|
return sc_isnonzero(c_new.bytes) == 0;
|
||||||
}
|
}
|
||||||
catch (...) { return false; }
|
catch (...) { return false; }
|
||||||
}
|
}
|
||||||
|
@ -77,9 +77,10 @@ namespace rct {
|
|||||||
mgSig MLSAG_Gen(const key &message, const keyM & pk, const keyV & xx, const multisig_kLRki *kLRki, key *mscout, const unsigned int index, size_t dsRows, hw::device &hwdev);
|
mgSig MLSAG_Gen(const key &message, const keyM & pk, const keyV & xx, const multisig_kLRki *kLRki, key *mscout, const unsigned int index, size_t dsRows, hw::device &hwdev);
|
||||||
bool MLSAG_Ver(const key &message, const keyM &pk, const mgSig &sig, size_t dsRows);
|
bool MLSAG_Ver(const key &message, const keyM &pk, const mgSig &sig, size_t dsRows);
|
||||||
|
|
||||||
clsag CLSAG_Gen(const key &message, const keyV & P, const key & p, const keyV & C, const key & z, const unsigned int l, const multisig_kLRki *kLRki, key *mscout, key *mspout);
|
clsag CLSAG_Gen(const key &message, const keyV & P, const key & p, const keyV & C, const keyV & C_nonzero, const key & C_offset, const key & z, const unsigned int l, const multisig_kLRki *kLRki, key *mscout, key *mspout);
|
||||||
clsag CLSAG_Gen(const key &message, const keyV & P, const key & p, const keyV & C, const key & z, const unsigned int l);
|
clsag CLSAG_Gen(const key &message, const keyV & P, const key & p, const keyV & C, const keyV & C_nonzero, const key & C_offset, const key & z, const unsigned int l);
|
||||||
bool CLSAG_Ver(const key &message, const keyV & P, const keyV & C, const clsag & sig);
|
clsag proveRctCLSAGSimple(const key &, const ctkeyV &, const ctkey &, const key &, const key &, const multisig_kLRki *, key *, key *, unsigned int, hw::device &);
|
||||||
|
bool verRctCLSAGSimple(const key &, const clsag &, const ctkeyV &, const key &);
|
||||||
|
|
||||||
//proveRange and verRange
|
//proveRange and verRange
|
||||||
//proveRange gives C, and mask such that \sumCi = C
|
//proveRange gives C, and mask such that \sumCi = C
|
||||||
|
@ -61,7 +61,6 @@
|
|||||||
#include "crypto_ops.h"
|
#include "crypto_ops.h"
|
||||||
#include "multiexp.h"
|
#include "multiexp.h"
|
||||||
#include "sig_mlsag.h"
|
#include "sig_mlsag.h"
|
||||||
#include "sig_clsag.h"
|
|
||||||
|
|
||||||
namespace po = boost::program_options;
|
namespace po = boost::program_options;
|
||||||
|
|
||||||
@ -216,7 +215,6 @@ int main(int argc, char** argv)
|
|||||||
TEST_PERFORMANCE1(filter, p, test_cn_fast_hash, 16384);
|
TEST_PERFORMANCE1(filter, p, test_cn_fast_hash, 16384);
|
||||||
|
|
||||||
TEST_PERFORMANCE2(filter, p, test_sig_mlsag, 11, true); // MLSAG verification
|
TEST_PERFORMANCE2(filter, p, test_sig_mlsag, 11, true); // MLSAG verification
|
||||||
TEST_PERFORMANCE3(filter, p, test_sig_clsag, 11, true, 0); // CLSAG verification
|
|
||||||
|
|
||||||
TEST_PERFORMANCE2(filter, p, test_ringct_mlsag, 11, false);
|
TEST_PERFORMANCE2(filter, p, test_ringct_mlsag, 11, false);
|
||||||
TEST_PERFORMANCE2(filter, p, test_ringct_mlsag, 11, true);
|
TEST_PERFORMANCE2(filter, p, test_ringct_mlsag, 11, true);
|
||||||
|
@ -140,165 +140,163 @@ TEST(ringct, MG_sigs)
|
|||||||
|
|
||||||
TEST(ringct, CLSAG)
|
TEST(ringct, CLSAG)
|
||||||
{
|
{
|
||||||
const size_t ring_size = 11;
|
const size_t N = 11;
|
||||||
const size_t idx = 5;
|
const size_t idx = 5;
|
||||||
keyV P, C;
|
ctkeyV pubs;
|
||||||
key p, z;
|
key p, t, t2, u;
|
||||||
const key message = identity();
|
const key message = identity();
|
||||||
key backup;
|
ctkey backup;
|
||||||
clsag clsag;
|
clsag clsag;
|
||||||
|
|
||||||
for (size_t i = 0; i < ring_size; ++i)
|
for (size_t i = 0; i < N; ++i)
|
||||||
{
|
{
|
||||||
key Sk, Pk;
|
key sk;
|
||||||
skpkGen(Sk, Pk);
|
ctkey tmp;
|
||||||
P.push_back(Pk);
|
|
||||||
skpkGen(Sk, Pk);
|
|
||||||
C.push_back(Pk);
|
|
||||||
}
|
|
||||||
skpkGen(p, P[idx]);
|
|
||||||
skpkGen(z, C[idx]);
|
|
||||||
|
|
||||||
// bad p at creation
|
skpkGen(sk, tmp.dest);
|
||||||
clsag = CLSAG_Gen(zero(), P, p, C, z, idx); //, hw::get_device("default"));
|
skpkGen(sk, tmp.mask);
|
||||||
ASSERT_FALSE(CLSAG_Ver(message, P, C, clsag));
|
|
||||||
|
pubs.push_back(tmp);
|
||||||
|
}
|
||||||
|
|
||||||
|
// Set P[idx]
|
||||||
|
skpkGen(p, pubs[idx].dest);
|
||||||
|
|
||||||
|
// Set C[idx]
|
||||||
|
t = skGen();
|
||||||
|
u = skGen();
|
||||||
|
addKeys2(pubs[idx].mask,t,u,H);
|
||||||
|
|
||||||
|
// Set commitment offset
|
||||||
|
key Cout;
|
||||||
|
t2 = skGen();
|
||||||
|
addKeys2(Cout,t2,u,H);
|
||||||
|
|
||||||
|
// Prepare generation inputs
|
||||||
|
ctkey insk;
|
||||||
|
insk.dest = p;
|
||||||
|
insk.mask = t;
|
||||||
|
|
||||||
|
// bad message
|
||||||
|
clsag = rct::proveRctCLSAGSimple(zero(),pubs,insk,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
|
||||||
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
|
|
||||||
// bad index at creation
|
// bad index at creation
|
||||||
try
|
try
|
||||||
{
|
{
|
||||||
clsag = CLSAG_Gen(message, P, p, C, z, (idx + 1) % ring_size); //, hw::get_device("default"));
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,NULL,NULL,NULL,(idx + 1) % N,hw::get_device("default"));
|
||||||
ASSERT_FALSE(CLSAG_Ver(message, P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
}
|
}
|
||||||
catch (...) { /* either exception, or failure to verify above */ }
|
catch (...) { /* either exception, or failure to verify above */ }
|
||||||
|
|
||||||
// bad z at creation
|
// bad z at creation
|
||||||
try
|
try
|
||||||
{
|
{
|
||||||
clsag = CLSAG_Gen(message, P, p, C, skGen(), idx); //, hw::get_device("default"));
|
ctkey insk2;
|
||||||
ASSERT_FALSE(CLSAG_Ver(message, P, C, clsag));
|
insk2.dest = insk.dest;
|
||||||
|
insk2.mask = skGen();
|
||||||
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk2,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
|
||||||
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
}
|
}
|
||||||
catch (...) { /* either exception, or failure to verify above */ }
|
catch (...) { /* either exception, or failure to verify above */ }
|
||||||
|
|
||||||
// bad C at creation
|
// bad C at creation
|
||||||
backup = C[idx];
|
backup = pubs[idx];
|
||||||
C[idx] = scalarmultBase(skGen());
|
pubs[idx].mask = scalarmultBase(skGen());
|
||||||
try
|
try
|
||||||
{
|
{
|
||||||
clsag = CLSAG_Gen(message, P, p, C, z, idx); //, hw::get_device("default"));
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
|
||||||
ASSERT_FALSE(CLSAG_Ver(message, P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
}
|
}
|
||||||
catch (...) { /* either exception, or failure to verify above */ }
|
catch (...) { /* either exception, or failure to verify above */ }
|
||||||
C[idx] = backup;
|
pubs[idx] = backup;
|
||||||
|
|
||||||
// bad p at creation
|
// bad p at creation
|
||||||
try
|
try
|
||||||
{
|
{
|
||||||
clsag = CLSAG_Gen(message, P, skGen(), C, z, idx); //, hw::get_device("default"));
|
ctkey insk2;
|
||||||
ASSERT_FALSE(CLSAG_Ver(message, P, C, clsag));
|
insk2.dest = skGen();
|
||||||
|
insk2.mask = insk.mask;
|
||||||
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk2,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
|
||||||
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
}
|
}
|
||||||
catch (...) { /* either exception, or failure to verify above */ }
|
catch (...) { /* either exception, or failure to verify above */ }
|
||||||
|
|
||||||
// bad P at creation
|
// bad P at creation
|
||||||
backup = P[idx];
|
backup = pubs[idx];
|
||||||
P[idx] = scalarmultBase(skGen());
|
pubs[idx].dest = scalarmultBase(skGen());
|
||||||
try
|
try
|
||||||
{
|
{
|
||||||
clsag = CLSAG_Gen(message, P, p, C, z, idx); //, hw::get_device("default"));
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
|
||||||
ASSERT_FALSE(CLSAG_Ver(message, P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
}
|
}
|
||||||
catch (...) { /* either exception, or failure to verify above */ }
|
catch (...) { /* either exception, or failure to verify above */ }
|
||||||
P[idx] = backup;
|
pubs[idx] = backup;
|
||||||
|
|
||||||
// good
|
// Test correct signature
|
||||||
clsag = CLSAG_Gen(message, P, p, C, z, idx); //, hw::get_device("default"));
|
clsag = rct::proveRctCLSAGSimple(message,pubs,insk,t2,Cout,NULL,NULL,NULL,idx,hw::get_device("default"));
|
||||||
ASSERT_TRUE(CLSAG_Ver(message, P, C, clsag));
|
ASSERT_TRUE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
|
|
||||||
// bad message at verification
|
|
||||||
ASSERT_FALSE(CLSAG_Ver(zero(), P, C, clsag));
|
|
||||||
|
|
||||||
// bad real P at verification
|
|
||||||
backup = P[idx];
|
|
||||||
P[idx] = scalarmultBase(skGen());
|
|
||||||
ASSERT_FALSE(CLSAG_Ver(zero(), P, C, clsag));
|
|
||||||
P[idx] = backup;
|
|
||||||
|
|
||||||
// bad fake P at verification
|
|
||||||
backup = P[(idx + 1) % ring_size];
|
|
||||||
P[(idx + 1) % ring_size] = scalarmultBase(skGen());
|
|
||||||
ASSERT_FALSE(CLSAG_Ver(zero(), P, C, clsag));
|
|
||||||
P[(idx + 1) % ring_size] = backup;
|
|
||||||
|
|
||||||
// bad real C at verification
|
|
||||||
backup = C[idx];
|
|
||||||
C[idx] = scalarmultBase(skGen());
|
|
||||||
ASSERT_FALSE(CLSAG_Ver(zero(), P, C, clsag));
|
|
||||||
C[idx] = backup;
|
|
||||||
|
|
||||||
// bad fake C at verification
|
|
||||||
backup = C[(idx + 1) % ring_size];
|
|
||||||
C[(idx + 1) % ring_size] = scalarmultBase(skGen());
|
|
||||||
ASSERT_FALSE(CLSAG_Ver(zero(), P, C, clsag));
|
|
||||||
C[(idx + 1) % ring_size] = backup;
|
|
||||||
|
|
||||||
// empty s
|
// empty s
|
||||||
auto sbackup = clsag.s;
|
auto sbackup = clsag.s;
|
||||||
clsag.s.clear();
|
clsag.s.clear();
|
||||||
ASSERT_FALSE(CLSAG_Ver(identity(), P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
clsag.s = sbackup;
|
clsag.s = sbackup;
|
||||||
|
|
||||||
// too few s elements
|
// too few s elements
|
||||||
backup = clsag.s.back();
|
key backup_key;
|
||||||
|
backup_key = clsag.s.back();
|
||||||
clsag.s.pop_back();
|
clsag.s.pop_back();
|
||||||
ASSERT_FALSE(CLSAG_Ver(identity(), P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
clsag.s.push_back(backup);
|
clsag.s.push_back(backup_key);
|
||||||
|
|
||||||
// too many s elements
|
// too many s elements
|
||||||
clsag.s.push_back(skGen());
|
clsag.s.push_back(skGen());
|
||||||
ASSERT_FALSE(CLSAG_Ver(identity(), P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
clsag.s.pop_back();
|
clsag.s.pop_back();
|
||||||
|
|
||||||
// bad s in clsag at verification
|
// bad s in clsag at verification
|
||||||
for (auto &s: clsag.s)
|
for (auto &s: clsag.s)
|
||||||
{
|
{
|
||||||
backup = s;
|
backup_key = s;
|
||||||
s = skGen();
|
s = skGen();
|
||||||
ASSERT_FALSE(CLSAG_Ver(identity(), P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
s = backup;
|
s = backup_key;
|
||||||
}
|
}
|
||||||
|
|
||||||
// bad c1 in clsag at verification
|
// bad c1 in clsag at verification
|
||||||
backup = clsag.c1;
|
backup_key = clsag.c1;
|
||||||
clsag.c1 = skGen();
|
clsag.c1 = skGen();
|
||||||
ASSERT_FALSE(CLSAG_Ver(identity(), P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
clsag.c1 = backup;
|
clsag.c1 = backup_key;
|
||||||
|
|
||||||
// bad I in clsag at verification
|
// bad I in clsag at verification
|
||||||
backup = clsag.I;
|
backup_key = clsag.I;
|
||||||
clsag.I = scalarmultBase(skGen());
|
clsag.I = scalarmultBase(skGen());
|
||||||
ASSERT_FALSE(CLSAG_Ver(identity(), P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
clsag.I = backup;
|
clsag.I = backup_key;
|
||||||
|
|
||||||
// bad D in clsag at verification
|
// bad D in clsag at verification
|
||||||
backup = clsag.D;
|
backup_key = clsag.D;
|
||||||
clsag.D = scalarmultBase(skGen());
|
clsag.D = scalarmultBase(skGen());
|
||||||
ASSERT_FALSE(CLSAG_Ver(identity(), P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
clsag.D = backup;
|
clsag.D = backup_key;
|
||||||
|
|
||||||
// D not in main subgroup in clsag at verification
|
// D not in main subgroup in clsag at verification
|
||||||
backup = clsag.D;
|
backup_key = clsag.D;
|
||||||
rct::key x;
|
rct::key x;
|
||||||
ASSERT_TRUE(epee::string_tools::hex_to_pod("c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa", x));
|
ASSERT_TRUE(epee::string_tools::hex_to_pod("c7176a703d4dd84fba3c0b760d10670f2a2053fa2c39ccc64ec7fd7792ac03fa", x));
|
||||||
clsag.D = rct::addKeys(clsag.D, x);
|
clsag.D = rct::addKeys(clsag.D, x);
|
||||||
ASSERT_FALSE(CLSAG_Ver(identity(), P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
clsag.D = backup;
|
clsag.D = backup_key;
|
||||||
|
|
||||||
// swapped I and D in clsag at verification
|
// swapped I and D in clsag at verification
|
||||||
std::swap(clsag.I, clsag.D);
|
std::swap(clsag.I, clsag.D);
|
||||||
ASSERT_FALSE(CLSAG_Ver(identity(), P, C, clsag));
|
ASSERT_FALSE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
std::swap(clsag.I, clsag.D);
|
std::swap(clsag.I, clsag.D);
|
||||||
|
|
||||||
// check it's still good, in case we failed to restore
|
// check it's still good, in case we failed to restore
|
||||||
ASSERT_TRUE(CLSAG_Ver(message, P, C, clsag));
|
ASSERT_TRUE(rct::verRctCLSAGSimple(message,clsag,pubs,Cout));
|
||||||
}
|
}
|
||||||
|
|
||||||
TEST(ringct, range_proofs)
|
TEST(ringct, range_proofs)
|
||||||
|
Loading…
Reference in New Issue
Block a user