10be903 Brackets to prevent premature return (NanoAkron)
fb1785a Brackets to ensure doesn't function prematurely return (NanoAkron)
8ed0d72 Moved logging to target functions rather than caller (NanoAkron)
442bfd1 Added messages at log level 2 to reflect deactivation procedure (NanoAkron)
This is intended to catch traffic coming from a web browser,
so we avoid issues with a web page sending a transfer RPC to
the wallet. Requiring a particular user agent can act as a
simple password scheme, while we wait for 0MQ and proper
authentication to be merged.
Keep the immediate direct deps at the library that depends on them,
declare deps as PUBLIC so that targets that link against that library
get the library's deps as transitive deps.
Break dep cycle between blockchain_db <-> crytonote_core.
No code refactoring, just hide cycle from cmake so that
it doesn't complain (cycles are allowed only between
static libs, not shared libs).
This is in preparation for supproting BUILD_SHARED_LIBS cmake
built-in option for building internal libs as shared.
This adds [snap](https://snapcraft.io) packaging to the project. See the
link for more information on snaps. Snap packages install on all Linux
distributions. On Ubuntu, snap confinement with apparmor and seccomp
provide an additional layer of security.
This snap sets up monerod as a systemd service, which should start
immediately on install. To access the wallet CLI, simply run `monero`
(/snap/bin/monero). I think it's a really quick & easy way to get
started with monero.
I've made some opinionated decisions in the packaging just to kick this
off, but I'm happy to iterate on this stuff.
By default the flag is enabled whenever libunwind is found on the
system, with the exception of static build on OSX (for which we can't
install the throw hook #932 due to lack of support for --wrap in OSX
ld64 linker).
When an exception happens while reading the config file, we need
to print the error, as the logging system isn't initialized yet,
so the generic catch will not print anything.
It sets the max number of threads to use for a parallel job.
This is different that the number of total threads, since monero
binaries typically start a lot of them.
d662ab5 rpc: print human readable time since received when printing pool (moneromooo-monero)
5c9dd23 rpc: add a do_not_relay boolean to tx submission (moneromooo-monero)
This is a list of existing output amounts along with the number
of outputs of that amount in the blockchain.
The daemon command takes:
- no parameters: all outputs with at least 3 instances
- one parameter: all outputs with at least that many instances
- two parameters: all outputs within that many instances
The default starts at 3 to avoid massive spamming of all dust
outputs in the blockchain, and is the current minimum mixin
requirement.
An optional vector of amounts may be passed, to request
histogram only for those outputs.
The functions in src/cryptonote_core/checkpoints_create.{h,cpp} should
be member functions of the checkpoints class, if nothing else for the
sake of keeping their documentation together.
This commit covers moving those functions to be member functions of the
checkpoints class as well as documenting those functions.
Example of current return for `print_block 912345`:
timestamp: 1452793716
previous hash:
b61c58b2e0be53fad5ef9d9731a55e8a81d972b8d90ed07c04fd37ca6403ff78
nonce: 1646
is orphan: 0
height: 912345
depth: 85434
hash:
e22cf75f39ae720e8b71b3d120a5ac03f0db50bba6379e2850975b4859190bc6difficul
ty: 815625611
reward: 7388968946286
{
"major_version": 1,
"minor_version": 2,
…
Without `std::endl`, the difficulty gets smashed on the end of the hash.
bcac101 daemon: fix a few issues reported by valgrind (moneromooo-monero)
a7e8174 tx_pool: fix serialization of new relayed data (moneromooo-monero)
601ad76 hardfork: fix mixup in indexing variable in get_voting_info (moneromooo-monero)
444e22f blockchain: remove unused timer (moneromooo-monero)
7edfdd8 blockchain: fix m_sync_counter uninitialized variable use (moneromooo-monero)
d97582c epee: use generate_random_bytes for new random uuids (moneromooo-monero)
17c7c9c epee: remove dodgy random code that nobody uses (moneromooo-monero)
In particular, ensure we check the status of RPC response structures,
as some functions will return success, but with a BUSY status, when
the daemon is not yet synced, and the response will not filled.
In particular, <boost/program_options.hpp> blows up daemon.cpp.obj,
making it too big to compile in debug mode on Win32. Even on a
release build it drops daemon.cpp.o on Linux from 31MB to 20MB.
This has no effect on the final linked binary size.
This fixes coretests, which does not register daemon specific arguments,
but uses core, which uses those arguments. Also gets rid of an unwanted
dependency on daemon code from core.
There are various locale related bugs in various versions of boost,
where exceptions are thrown in boost::filesystem APIs when the
current locale is not to boost's liking. It's not clear what "not
to boost's liking" means in detail, though "en" and "en_US.UTF-8"
are not to its liking.
Fix it by running a test function that's known to throw in such
a case, and resetting LANG and LC_ALL to C if an exception is
thrown. In simplewallet, the locale is queried before that so the
correct translations will still be used.
They check whether they're running on testnet by accessing the
m_rpc_server object, which does not exist when in RPC mode.
Also, fix hard_fork_info being called with the wrong API.
Displays current block height and target, net hash, hard fork
basic info, and connections.
Useful as a basic user friendly "what's going on here" command.
Bockchain:
1. Optim: Multi-thread long-hash computation when encountering groups of blocks.
2. Optim: Cache verified txs and return result from cache instead of re-checking whenever possible.
3. Optim: Preload output-keys when encoutering groups of blocks. Sort by amount and global-index before bulk querying database and multi-thread when possible.
4. Optim: Disable double spend check on block verification, double spend is already detected when trying to add blocks.
5. Optim: Multi-thread signature computation whenever possible.
6. Patch: Disable locking (recursive mutex) on called functions from check_tx_inputs which causes slowdowns (only seems to happen on ubuntu/VMs??? Reason: TBD)
7. Optim: Removed looped full-tx hash computation when retrieving transactions from pool (???).
8. Optim: Cache difficulty/timestamps (735 blocks) for next-difficulty calculations so that only 2 db reads per new block is needed when a new block arrives (instead of 1470 reads).
Berkeley-DB:
1. Fix: 32-bit data errors causing wrong output global indices and failure to send blocks to peers (etc).
2. Fix: Unable to pop blocks on reorganize due to transaction errors.
3. Patch: Large number of transaction aborts when running multi-threaded bulk queries.
4. Patch: Insufficient locks error when running full sync.
5. Patch: Incorrect db stats when returning from an immediate exit from "pop block" operation.
6. Optim: Add bulk queries to get output global indices.
7. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3)
8. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key
9. Optim: Added thread-safe buffers used when multi-threading bulk queries.
10. Optim: Added support for nosync/write_nosync options for improved performance (*see --db-sync-mode option for details)
11. Mod: Added checkpoint thread and auto-remove-logs option.
12. *Now usable on 32-bit systems like RPI2.
LMDB:
1. Optim: Added custom comparison for 256-bit key tables (minor speed-up, TBD: get actual effect)
2. Optim: Modified output_keys table to store public_key+unlock_time+height for single transaction lookup (vs 3)
3. Optim: Used output_keys table retrieve public_keys instead of going through output_amounts->output_txs+output_indices->txs->output:public_key
4. Optim: Added support for sync/writemap options for improved performance (*see --db-sync-mode option for details)
5. Mod: Auto resize to +1GB instead of multiplier x1.5
ETC:
1. Minor optimizations for slow-hash for ARM (RPI2). Incomplete.
2. Fix: 32-bit saturation bug when computing next difficulty on large blocks.
[PENDING ISSUES]
1. Berkely db has a very slow "pop-block" operation. This is very noticeable on the RPI2 as it sometimes takes > 10 MINUTES to pop a block during reorganization.
This does not happen very often however, most reorgs seem to take a few seconds but it possibly depends on the number of outputs present. TBD.
2. Berkeley db, possible bug "unable to allocate memory". TBD.
[NEW OPTIONS] (*Currently all enabled for testing purposes)
1. --fast-block-sync arg=[0:1] (default: 1)
a. 0 = Compute long hash per block (may take a while depending on CPU)
b. 1 = Skip long-hash and verify blocks based on embedded known good block hashes (faster, minimal CPU dependence)
2. --db-sync-mode arg=[[safe|fast|fastest]:[sync|async]:[nblocks_per_sync]] (default: fastest:async:1000)
a. safe = fdatasync/fsync (or equivalent) per stored block. Very slow, but safest option to protect against power-out/crash conditions.
b. fast/fastest = Enables asynchronous fdatasync/fsync (or equivalent). Useful for battery operated devices or STABLE systems with UPS and/or systems with battery backed write cache/solid state cache.
Fast - Write meta-data but defer data flush.
Fastest - Defer meta-data and data flush.
Sync - Flush data after nblocks_per_sync and wait.
Async - Flush data after nblocks_per_sync but do not wait for the operation to finish.
3. --prep-blocks-threads arg=[n] (default: 4 or system max threads, whichever is lower)
Max number of threads to use when computing long-hash in groups.
4. --show-time-stats arg=[0:1] (default: 1)
Show benchmark related time stats.
5. --db-auto-remove-logs arg=[0:1] (default: 1)
For berkeley-db only. Auto remove logs if enabled.
**Note: lmdb and berkeley-db have changes to the tables and are not compatible with official git head version.
At the moment, you need a full resync to use this optimized version.
[PERFORMANCE COMPARISON]
**Some figures are approximations only.
Using a baseline machine of an i7-2600K+SSD+(with full pow computation):
1. The optimized lmdb/blockhain core can process blocks up to 585K for ~1.25 hours + download time, so it usually takes 2.5 hours to sync the full chain.
2. The current head with memory can process blocks up to 585K for ~4.2 hours + download time, so it usually takes 5.5 hours to sync the full chain.
3. The current head with lmdb can process blocks up to 585K for ~32 hours + download time and usually takes 36 hours to sync the full chain.
Averate procesing times (with full pow computation):
lmdb-optimized:
1. tx_ave = 2.5 ms / tx
2. block_ave = 5.87 ms / block
memory-official-repo:
1. tx_ave = 8.85 ms / tx
2. block_ave = 19.68 ms / block
lmdb-official-repo (0f4a036437)
1. tx_ave = 47.8 ms / tx
2. block_ave = 64.2 ms / block
**Note: The following data denotes processing times only (does not include p2p download time)
lmdb-optimized processing times (with full pow computation):
1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.25 hours processing time (--db-sync-mode=fastest:async:1000).
2. Laptop, Dual-core / 4-threads U4200 (3Mb) - 4.90 hours processing time (--db-sync-mode=fastest:async:1000).
3. Embedded, Quad-core / 4-threads Z3735F (2x1Mb) - 12.0 hours processing time (--db-sync-mode=fastest:async:1000).
lmdb-optimized processing times (with per-block-checkpoint)
1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 10 minutes processing time (--db-sync-mode=fastest:async:1000).
berkeley-db optimized processing times (with full pow computation)
1. Desktop, Quad-core / 8-threads 2600k (8Mb) - 1.8 hours processing time (--db-sync-mode=fastest:async:1000).
2. RPI2. Improved from estimated 3 months(???) into 2.5 days (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
berkeley-db optimized processing times (with per-block-checkpoint)
1. RPI2. 12-15 hours (*Need 2AMP supply + Clock:1Ghz + [usb+ssd] to achieve this speed) (--db-sync-mode=fastest:async:1000).
It uses the async console handler differently than simplewallet,
and wasn't running the same exit code, causing it to never actually
exit after breaking out of the console entry loop.