mirror of
https://github.com/monero-project/monero.git
synced 2025-01-18 15:43:39 +02:00
4c313324b1
Scheme by luigi1111: Multisig for RingCT on Monero 2 of 2 User A (coordinator): Spendkey b,B Viewkey a,A (shared) User B: Spendkey c,C Viewkey a,A (shared) Public Address: C+B, A Both have their own watch only wallet via C+B, a A will coordinate spending process (though B could easily as well, coordinator is more needed for more participants) A and B watch for incoming outputs B creates "half" key images for discovered output D: I2_D = (Hs(aR)+c) * Hp(D) B also creates 1.5 random keypairs (one scalar and 2 pubkeys; one on base G and one on base Hp(D)) for each output, storing the scalar(k) (linked to D), and sending the pubkeys with I2_D. A also creates "half" key images: I1_D = (Hs(aR)+b) * Hp(D) Then I_D = I1_D + I2_D Having I_D allows A to check spent status of course, but more importantly allows A to actually build a transaction prefix (and thus transaction). A builds the transaction until most of the way through MLSAG_Gen, adding the 2 pubkeys (per input) provided with I2_D to his own generated ones where they are needed (secret row L, R). At this point, A has a mostly completed transaction (but with an invalid/incomplete signature). A sends over the tx and includes r, which allows B (with the recipient's address) to verify the destination and amount (by reconstructing the stealth address and decoding ecdhInfo). B then finishes the signature by computing ss[secret_index][0] = ss[secret_index][0] + k - cc[secret_index]*c (secret indices need to be passed as well). B can then broadcast the tx, or send it back to A for broadcasting. Once B has completed the signing (and verified the tx to be valid), he can add the full I_D to his cache, allowing him to verify spent status as well. NOTE: A and B *must* present key A and B to each other with a valid signature proving they know a and b respectively. Otherwise, trickery like the following becomes possible: A creates viewkey a,A, spendkey b,B, and sends a,A,B to B. B creates a fake key C = zG - B. B sends C back to A. The combined spendkey C+B then equals zG, allowing B to spend funds at any time! The signature fixes this, because B does not know a c corresponding to C (and thus can't produce a signature). 2 of 3 User A (coordinator) Shared viewkey a,A "spendkey" j,J User B "spendkey" k,K User C "spendkey" m,M A collects K and M from B and C B collects J and M from A and C C collects J and K from A and B A computes N = nG, n = Hs(jK) A computes O = oG, o = Hs(jM) B anc C compute P = pG, p = Hs(kM) || Hs(mK) B and C can also compute N and O respectively if they wish to be able to coordinate Address: N+O+P, A The rest follows as above. The coordinator possesses 2 of 3 needed keys; he can get the other needed part of the signature/key images from either of the other two. Alternatively, if secure communication exists between parties: A gives j to B B gives k to C C gives m to A Address: J+K+M, A 3 of 3 Identical to 2 of 2, except the coordinator must collect the key images from both of the others. The transaction must also be passed an additional hop: A -> B -> C (or A -> C -> B), who can then broadcast it or send it back to A. N-1 of N Generally the same as 2 of 3, except participants need to be arranged in a ring to pass their keys around (using either the secure or insecure method). For example (ignoring viewkey so letters line up): [4 of 5] User: spendkey A: a B: b C: c D: d E: e a -> B, b -> C, c -> D, d -> E, e -> A Order of signing does not matter, it just must reach n-1 users. A "remaining keys" list must be passed around with the transaction so the signers know if they should use 1 or both keys. Collecting key image parts becomes a little messy, but basically every wallet sends over both of their parts with a tag for each. Thia way the coordinating wallet can keep track of which images have been added and which wallet they come from. Reasoning: 1. The key images must be added only once (coordinator will get key images for key a from both A and B, he must add only one to get the proper key actual key image) 2. The coordinator must keep track of which helper pubkeys came from which wallet (discussed in 2 of 2 section). The coordinator must choose only one set to use, then include his choice in the "remaining keys" list so the other wallets know which of their keys to use. You can generalize it further to N-2 of N or even M of N, but I'm not sure there's legitimate demand to justify the complexity. It might also be straightforward enough to support with minimal changes from N-1 format. You basically just give each user additional keys for each additional "-1" you desire. N-2 would be 3 keys per user, N-3 4 keys, etc. The process is somewhat cumbersome: To create a N/N multisig wallet: - each participant creates a normal wallet - each participant runs "prepare_multisig", and sends the resulting string to every other participant - each participant runs "make_multisig N A B C D...", with N being the threshold and A B C D... being the strings received from other participants (the threshold must currently equal N) As txes are received, participants' wallets will need to synchronize so that those new outputs may be spent: - each participant runs "export_multisig FILENAME", and sends the FILENAME file to every other participant - each participant runs "import_multisig A B C D...", with A B C D... being the filenames received from other participants Then, a transaction may be initiated: - one of the participants runs "transfer ADDRESS AMOUNT" - this partly signed transaction will be written to the "multisig_monero_tx" file - the initiator sends this file to another participant - that other participant runs "sign_multisig multisig_monero_tx" - the resulting transaction is written to the "multisig_monero_tx" file again - if the threshold was not reached, the file must be sent to another participant, until enough have signed - the last participant to sign runs "submit_multisig multisig_monero_tx" to relay the transaction to the Monero network
1063 lines
35 KiB
C++
1063 lines
35 KiB
C++
// Copyright (c) 2014-2017, The Monero Project
|
|
//
|
|
// All rights reserved.
|
|
//
|
|
// Redistribution and use in source and binary forms, with or without modification, are
|
|
// permitted provided that the following conditions are met:
|
|
//
|
|
// 1. Redistributions of source code must retain the above copyright notice, this list of
|
|
// conditions and the following disclaimer.
|
|
//
|
|
// 2. Redistributions in binary form must reproduce the above copyright notice, this list
|
|
// of conditions and the following disclaimer in the documentation and/or other
|
|
// materials provided with the distribution.
|
|
//
|
|
// 3. Neither the name of the copyright holder nor the names of its contributors may be
|
|
// used to endorse or promote products derived from this software without specific
|
|
// prior written permission.
|
|
//
|
|
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY
|
|
// EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
|
|
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL
|
|
// THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
|
|
// PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
// INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT,
|
|
// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF
|
|
// THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
//
|
|
// Parts of this file are originally copyright (c) 2012-2013 The Cryptonote developers
|
|
|
|
#include "gtest/gtest.h"
|
|
|
|
#include <cstdint>
|
|
#include <algorithm>
|
|
#include <sstream>
|
|
|
|
#include "ringct/rctTypes.h"
|
|
#include "ringct/rctSigs.h"
|
|
#include "ringct/rctOps.h"
|
|
|
|
using namespace std;
|
|
using namespace crypto;
|
|
using namespace rct;
|
|
|
|
TEST(ringct, Borromean)
|
|
{
|
|
int j = 0;
|
|
|
|
//Tests for Borromean signatures
|
|
//#boro true one, false one, C != sum Ci, and one out of the range..
|
|
int N = 64;
|
|
key64 xv;
|
|
key64 P1v;
|
|
key64 P2v;
|
|
bits indi;
|
|
|
|
for (j = 0 ; j < N ; j++) {
|
|
indi[j] = (int)randXmrAmount(2);
|
|
|
|
xv[j] = skGen();
|
|
if ( (int)indi[j] == 0 ) {
|
|
scalarmultBase(P1v[j], xv[j]);
|
|
} else {
|
|
addKeys1(P1v[j], xv[j], H2[j]);
|
|
}
|
|
subKeys(P2v[j], P1v[j], H2[j]);
|
|
}
|
|
|
|
//#true one
|
|
boroSig bb = genBorromean(xv, P1v, P2v, indi);
|
|
ASSERT_TRUE(verifyBorromean(bb, P1v, P2v));
|
|
|
|
//#false one
|
|
indi[3] = (indi[3] + 1) % 2;
|
|
bb = genBorromean(xv, P1v, P2v, indi);
|
|
ASSERT_FALSE(verifyBorromean(bb, P1v, P2v));
|
|
|
|
//#true one again
|
|
indi[3] = (indi[3] + 1) % 2;
|
|
bb = genBorromean(xv, P1v, P2v, indi);
|
|
ASSERT_TRUE(verifyBorromean(bb, P1v, P2v));
|
|
|
|
//#false one
|
|
bb = genBorromean(xv, P2v, P1v, indi);
|
|
ASSERT_FALSE(verifyBorromean(bb, P1v, P2v));
|
|
}
|
|
|
|
TEST(ringct, MG_sigs)
|
|
{
|
|
int j = 0;
|
|
int N = 0;
|
|
|
|
//Tests for MG Sigs
|
|
//#MG sig: true one
|
|
N = 3;// #cols
|
|
int R = 3;// #rows
|
|
keyV xtmp = skvGen(R);
|
|
keyM xm = keyMInit(R, N);// = [[None]*N] #just used to generate test public keys
|
|
keyV sk = skvGen(R);
|
|
keyM P = keyMInit(R, N);// = keyM[[None]*N] #stores the public keys;
|
|
int ind = 2;
|
|
int i = 0;
|
|
for (j = 0 ; j < R ; j++) {
|
|
for (i = 0 ; i < N ; i++)
|
|
{
|
|
xm[i][j] = skGen();
|
|
P[i][j] = scalarmultBase(xm[i][j]);
|
|
}
|
|
}
|
|
for (j = 0 ; j < R ; j++) {
|
|
sk[j] = xm[ind][j];
|
|
}
|
|
key message = identity();
|
|
mgSig IIccss = MLSAG_Gen(message, P, sk, NULL, NULL, ind, R);
|
|
ASSERT_TRUE(MLSAG_Ver(message, P, IIccss, R));
|
|
|
|
//#MG sig: false one
|
|
N = 3;// #cols
|
|
R = 3;// #rows
|
|
xtmp = skvGen(R);
|
|
keyM xx(N, xtmp);// = [[None]*N] #just used to generate test public keys
|
|
sk = skvGen(R);
|
|
//P (N, xtmp);// = keyM[[None]*N] #stores the public keys;
|
|
|
|
ind = 2;
|
|
for (j = 0 ; j < R ; j++) {
|
|
for (i = 0 ; i < N ; i++)
|
|
{
|
|
xx[i][j] = skGen();
|
|
P[i][j] = scalarmultBase(xx[i][j]);
|
|
}
|
|
sk[j] = xx[ind][j];
|
|
}
|
|
sk[2] = skGen();//asume we don't know one of the private keys..
|
|
IIccss = MLSAG_Gen(message, P, sk, NULL, NULL, ind, R);
|
|
ASSERT_FALSE(MLSAG_Ver(message, P, IIccss, R));
|
|
}
|
|
|
|
TEST(ringct, range_proofs)
|
|
{
|
|
//Ring CT Stuff
|
|
//ct range proofs
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
//add fake input 5000
|
|
tie(sctmp, pctmp) = ctskpkGen(6000);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
|
|
|
|
tie(sctmp, pctmp) = ctskpkGen(7000);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
vector<xmr_amount >amounts;
|
|
rct::keyV amount_keys;
|
|
key mask;
|
|
|
|
//add output 500
|
|
amounts.push_back(500);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
keyV destinations;
|
|
key Sk, Pk;
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
|
|
//add output for 12500
|
|
amounts.push_back(12500);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
//compute rct data with mixin 500
|
|
rctSig s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3);
|
|
|
|
//verify rct data
|
|
ASSERT_TRUE(verRct(s));
|
|
|
|
//decode received amount
|
|
ASSERT_TRUE(decodeRct(s, amount_keys[1], 1, mask));
|
|
|
|
// Ring CT with failing MG sig part should not verify!
|
|
// Since sum of inputs != outputs
|
|
|
|
amounts[1] = 12501;
|
|
skpkGen(Sk, Pk);
|
|
destinations[1] = Pk;
|
|
|
|
|
|
//compute rct data with mixin 500
|
|
s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3);
|
|
|
|
//verify rct data
|
|
ASSERT_FALSE(verRct(s));
|
|
|
|
//decode received amount
|
|
ASSERT_TRUE(decodeRct(s, amount_keys[1], 1, mask));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_with_fee)
|
|
{
|
|
//Ring CT Stuff
|
|
//ct range proofs
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
//add fake input 5000
|
|
tie(sctmp, pctmp) = ctskpkGen(6001);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
|
|
|
|
tie(sctmp, pctmp) = ctskpkGen(7000);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
vector<xmr_amount >amounts;
|
|
keyV amount_keys;
|
|
key mask;
|
|
|
|
//add output 500
|
|
amounts.push_back(500);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
keyV destinations;
|
|
key Sk, Pk;
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
//add txn fee for 1
|
|
//has no corresponding destination..
|
|
amounts.push_back(1);
|
|
|
|
//add output for 12500
|
|
amounts.push_back(12500);
|
|
amount_keys.push_back(hash_to_scalar(zero()));
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
//compute rct data with mixin 500
|
|
rctSig s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3);
|
|
|
|
//verify rct data
|
|
ASSERT_TRUE(verRct(s));
|
|
|
|
//decode received amount
|
|
ASSERT_TRUE(decodeRct(s, amount_keys[1], 1, mask));
|
|
|
|
// Ring CT with failing MG sig part should not verify!
|
|
// Since sum of inputs != outputs
|
|
|
|
amounts[1] = 12501;
|
|
skpkGen(Sk, Pk);
|
|
destinations[1] = Pk;
|
|
|
|
|
|
//compute rct data with mixin 500
|
|
s = genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3);
|
|
|
|
//verify rct data
|
|
ASSERT_FALSE(verRct(s));
|
|
|
|
//decode received amount
|
|
ASSERT_TRUE(decodeRct(s, amount_keys[1], 1, mask));
|
|
}
|
|
|
|
TEST(ringct, simple)
|
|
{
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
//this vector corresponds to output amounts
|
|
vector<xmr_amount>outamounts;
|
|
//this vector corresponds to input amounts
|
|
vector<xmr_amount>inamounts;
|
|
//this keyV corresponds to destination pubkeys
|
|
keyV destinations;
|
|
keyV amount_keys;
|
|
key mask;
|
|
|
|
//add fake input 3000
|
|
//the sc is secret data
|
|
//pc is public data
|
|
tie(sctmp, pctmp) = ctskpkGen(3000);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
inamounts.push_back(3000);
|
|
|
|
//add fake input 3000
|
|
//the sc is secret data
|
|
//pc is public data
|
|
tie(sctmp, pctmp) = ctskpkGen(3000);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
inamounts.push_back(3000);
|
|
|
|
//add output 5000
|
|
outamounts.push_back(5000);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
//add the corresponding destination pubkey
|
|
key Sk, Pk;
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
//add output 999
|
|
outamounts.push_back(999);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
//add the corresponding destination pubkey
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
|
|
key message = skGen(); //real message later (hash of txn..)
|
|
|
|
//compute sig with mixin 2
|
|
xmr_amount txnfee = 1;
|
|
|
|
rctSig s = genRctSimple(message, sc, pc, destinations,inamounts, outamounts, amount_keys, NULL, NULL, txnfee, 2);
|
|
|
|
//verify ring ct signature
|
|
ASSERT_TRUE(verRctSimple(s));
|
|
|
|
//decode received amount corresponding to output pubkey index 1
|
|
ASSERT_TRUE(decodeRctSimple(s, amount_keys[1], 1, mask));
|
|
}
|
|
|
|
static rct::rctSig make_sample_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee)
|
|
{
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
vector<xmr_amount >amounts;
|
|
keyV destinations;
|
|
keyV amount_keys;
|
|
key Sk, Pk;
|
|
|
|
for (int n = 0; n < n_inputs; ++n) {
|
|
tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
}
|
|
|
|
for (int n = 0; n < n_outputs; ++n) {
|
|
amounts.push_back(output_amounts[n]);
|
|
skpkGen(Sk, Pk);
|
|
if (n < n_outputs - 1 || !last_is_fee)
|
|
{
|
|
destinations.push_back(Pk);
|
|
amount_keys.push_back(rct::hash_to_scalar(rct::zero()));
|
|
}
|
|
}
|
|
|
|
return genRct(rct::zero(), sc, pc, destinations, amounts, amount_keys, NULL, NULL, 3);;
|
|
}
|
|
|
|
static rct::rctSig make_sample_simple_rct_sig(int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], uint64_t fee)
|
|
{
|
|
ctkeyV sc, pc;
|
|
ctkey sctmp, pctmp;
|
|
vector<xmr_amount> inamounts, outamounts;
|
|
keyV destinations;
|
|
keyV amount_keys;
|
|
key Sk, Pk;
|
|
|
|
for (int n = 0; n < n_inputs; ++n) {
|
|
inamounts.push_back(input_amounts[n]);
|
|
tie(sctmp, pctmp) = ctskpkGen(input_amounts[n]);
|
|
sc.push_back(sctmp);
|
|
pc.push_back(pctmp);
|
|
}
|
|
|
|
for (int n = 0; n < n_outputs; ++n) {
|
|
outamounts.push_back(output_amounts[n]);
|
|
amount_keys.push_back(hash_to_scalar(zero()));
|
|
skpkGen(Sk, Pk);
|
|
destinations.push_back(Pk);
|
|
}
|
|
|
|
return genRctSimple(rct::zero(), sc, pc, destinations, inamounts, outamounts, amount_keys, NULL, NULL, fee, 3);;
|
|
}
|
|
|
|
static bool range_proof_test(bool expected_valid,
|
|
int n_inputs, const uint64_t input_amounts[], int n_outputs, const uint64_t output_amounts[], bool last_is_fee, bool simple)
|
|
{
|
|
//compute rct data
|
|
bool valid;
|
|
try {
|
|
rctSig s;
|
|
// simple takes fee as a parameter, non-simple takes it as an extra element to output amounts
|
|
if (simple) {
|
|
s = make_sample_simple_rct_sig(n_inputs, input_amounts, last_is_fee ? n_outputs - 1 : n_outputs, output_amounts, last_is_fee ? output_amounts[n_outputs - 1] : 0);
|
|
valid = verRctSimple(s);
|
|
}
|
|
else {
|
|
s = make_sample_rct_sig(n_inputs, input_amounts, n_outputs, output_amounts, last_is_fee);
|
|
valid = verRct(s);
|
|
}
|
|
}
|
|
catch (const std::exception &e) {
|
|
valid = false;
|
|
}
|
|
|
|
if (valid == expected_valid) {
|
|
return testing::AssertionSuccess();
|
|
}
|
|
else {
|
|
return testing::AssertionFailure();
|
|
}
|
|
}
|
|
|
|
#define NELTS(array) (sizeof(array)/sizeof(array[0]))
|
|
|
|
TEST(ringct, range_proofs_reject_empty_outs)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_outs_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_ins)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_ins_simple)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_all_empty)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_all_empty_simple)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_empty)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_empty_simple)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_zero)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_empty_zero_simple)
|
|
{
|
|
const uint64_t inputs[] = {};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_zero)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_zero_simple)
|
|
{
|
|
const uint64_t inputs[] = {0};
|
|
const uint64_t outputs[] = {0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_first)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {0, 5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_first_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {0, 5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_last)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5000, 0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_last_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5000, 0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_middle)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {2500, 0, 2500};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_out_middle_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {2500, 0, 2500};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_first)
|
|
{
|
|
const uint64_t inputs[] = {0, 5000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_first_simple)
|
|
{
|
|
const uint64_t inputs[] = {0, 5000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_last)
|
|
{
|
|
const uint64_t inputs[] = {5000, 0};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_last_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000, 0};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_middle)
|
|
{
|
|
const uint64_t inputs[] = {2500, 0, 2500};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_zero_in_middle_simple)
|
|
{
|
|
const uint64_t inputs[] = {2500, 0, 2500};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_lower)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_lower_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_higher)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5001};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_higher_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5001};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_out_negative)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {(uint64_t)-1000ll};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_out_negative_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {(uint64_t)-1000ll};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_first)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {(uint64_t)-1000ll, 6000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_first_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {(uint64_t)-1000ll, 6000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_last)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {6000, (uint64_t)-1000ll};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_last_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {6000, (uint64_t)-1000ll};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_middle)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_out_negative_middle_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {3000, (uint64_t)-1000ll, 3000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_in_negative)
|
|
{
|
|
const uint64_t inputs[] = {(uint64_t)-1000ll};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_single_in_negative_simple)
|
|
{
|
|
const uint64_t inputs[] = {(uint64_t)-1000ll};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_first)
|
|
{
|
|
const uint64_t inputs[] = {(uint64_t)-1000ll, 6000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_first_simple)
|
|
{
|
|
const uint64_t inputs[] = {(uint64_t)-1000ll, 6000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_last)
|
|
{
|
|
const uint64_t inputs[] = {6000, (uint64_t)-1000ll};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_last_simple)
|
|
{
|
|
const uint64_t inputs[] = {6000, (uint64_t)-1000ll};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_middle)
|
|
{
|
|
const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_in_negative_middle_simple)
|
|
{
|
|
const uint64_t inputs[] = {3000, (uint64_t)-1000ll, 3000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_higher_list)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_reject_higher_list_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_1_to_1)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_1_to_1_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_1_to_N)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_1_to_N_simple)
|
|
{
|
|
const uint64_t inputs[] = {5000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false,true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_N_to_1)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_N_to_1_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
const uint64_t outputs[] = {5000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_N_to_N)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_N_to_N_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
const uint64_t outputs[] = {1000, 1000, 1000, 1000, 1000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_very_long)
|
|
{
|
|
const size_t N=12;
|
|
uint64_t inputs[N];
|
|
uint64_t outputs[N];
|
|
for (size_t n = 0; n < N; ++n) {
|
|
inputs[n] = n;
|
|
outputs[n] = n;
|
|
}
|
|
std::random_shuffle(inputs, inputs + N);
|
|
std::random_shuffle(outputs, outputs + N);
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, false));
|
|
}
|
|
|
|
TEST(ringct, range_proofs_accept_very_long_simple)
|
|
{
|
|
const size_t N=12;
|
|
uint64_t inputs[N];
|
|
uint64_t outputs[N];
|
|
for (size_t n = 0; n < N; ++n) {
|
|
inputs[n] = n;
|
|
outputs[n] = n;
|
|
}
|
|
std::random_shuffle(inputs, inputs + N);
|
|
std::random_shuffle(outputs, outputs + N);
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, false, true));
|
|
}
|
|
|
|
TEST(ringct, HPow2)
|
|
{
|
|
key G = scalarmultBase(d2h(1));
|
|
|
|
key H = hashToPointSimple(G);
|
|
for (int j = 0 ; j < ATOMS ; j++) {
|
|
ASSERT_TRUE(equalKeys(H, H2[j]));
|
|
addKeys(H, H, H);
|
|
}
|
|
}
|
|
|
|
static const xmr_amount test_amounts[]={0, 1, 2, 3, 4, 5, 10000, 10000000000000000000ull, 10203040506070809000ull, 123456789123456789};
|
|
|
|
TEST(ringct, ecdh_roundtrip)
|
|
{
|
|
key k;
|
|
ecdhTuple t0, t1;
|
|
|
|
for (auto amount: test_amounts) {
|
|
skGen(k);
|
|
|
|
t0.mask = skGen();
|
|
t0.amount = d2h(amount);
|
|
|
|
t1 = t0;
|
|
ecdhEncode(t1, k);
|
|
ecdhDecode(t1, k);
|
|
ASSERT_TRUE(t0.mask == t1.mask);
|
|
ASSERT_TRUE(equalKeys(t0.mask, t1.mask));
|
|
ASSERT_TRUE(t0.amount == t1.amount);
|
|
ASSERT_TRUE(equalKeys(t0.amount, t1.amount));
|
|
}
|
|
}
|
|
|
|
TEST(ringct, d2h)
|
|
{
|
|
key k, P1;
|
|
skpkGen(k, P1);
|
|
for (auto amount: test_amounts) {
|
|
d2h(k, amount);
|
|
ASSERT_TRUE(amount == h2d(k));
|
|
}
|
|
}
|
|
|
|
TEST(ringct, d2b)
|
|
{
|
|
for (auto amount: test_amounts) {
|
|
bits b;
|
|
d2b(b, amount);
|
|
ASSERT_TRUE(amount == b2d(b));
|
|
}
|
|
}
|
|
|
|
TEST(ringct, prooveRange_is_non_deterministic)
|
|
{
|
|
key C[2], mask[2];
|
|
for (int n = 0; n < 2; ++n)
|
|
proveRange(C[n], mask[n], 80);
|
|
ASSERT_TRUE(memcmp(C[0].bytes, C[1].bytes, sizeof(C[0].bytes)));
|
|
ASSERT_TRUE(memcmp(mask[0].bytes, mask[1].bytes, sizeof(mask[0].bytes)));
|
|
}
|
|
|
|
TEST(ringct, fee_0_valid)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {2000, 0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_0_valid_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {2000, 0};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_valid)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1900, 100};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_valid_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1900, 100};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_invalid_higher)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1990, 100};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_invalid_higher_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1990, 100};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_invalid_lower)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1000, 100};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_non_0_invalid_lower_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1000, 100};
|
|
EXPECT_TRUE(range_proof_test(false, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
TEST(ringct, fee_burn_valid_one_out)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {0, 2000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_burn_valid_one_out_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {0, 2000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
TEST(ringct, fee_burn_valid_zero_out)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {2000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, false));
|
|
}
|
|
|
|
TEST(ringct, fee_burn_valid_zero_out_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {2000};
|
|
EXPECT_TRUE(range_proof_test(true, NELTS(inputs), inputs, NELTS(outputs), outputs, true, true));
|
|
}
|
|
|
|
#define TEST_rctSig_elements(name, op) \
|
|
TEST(ringct, rctSig_##name) \
|
|
{ \
|
|
const uint64_t inputs[] = {1000, 1000}; \
|
|
const uint64_t outputs[] = {1000, 1000}; \
|
|
rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true); \
|
|
ASSERT_TRUE(rct::verRct(sig)); \
|
|
op; \
|
|
ASSERT_FALSE(rct::verRct(sig)); \
|
|
}
|
|
|
|
TEST_rctSig_elements(rangeSigs_empty, sig.p.rangeSigs.resize(0));
|
|
TEST_rctSig_elements(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back()));
|
|
TEST_rctSig_elements(rangeSigs_too_few, sig.p.rangeSigs.pop_back());
|
|
TEST_rctSig_elements(mgSig_MG_empty, sig.p.MGs.resize(0));
|
|
TEST_rctSig_elements(mgSig_ss_empty, sig.p.MGs[0].ss.resize(0));
|
|
TEST_rctSig_elements(mgSig_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back()));
|
|
TEST_rctSig_elements(mgSig_ss_too_few, sig.p.MGs[0].ss.pop_back());
|
|
TEST_rctSig_elements(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0));
|
|
TEST_rctSig_elements(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back()));
|
|
TEST_rctSig_elements(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back());
|
|
TEST_rctSig_elements(mgSig_II_empty, sig.p.MGs[0].II.resize(0));
|
|
TEST_rctSig_elements(mgSig_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back()));
|
|
TEST_rctSig_elements(mgSig_II_too_few, sig.p.MGs[0].II.pop_back());
|
|
TEST_rctSig_elements(mixRing_empty, sig.mixRing.resize(0));
|
|
TEST_rctSig_elements(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back()));
|
|
TEST_rctSig_elements(mixRing_too_few, sig.mixRing.pop_back());
|
|
TEST_rctSig_elements(mixRing0_empty, sig.mixRing[0].resize(0));
|
|
TEST_rctSig_elements(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back()));
|
|
TEST_rctSig_elements(mixRing0_too_few, sig.mixRing[0].pop_back());
|
|
TEST_rctSig_elements(ecdhInfo_empty, sig.ecdhInfo.resize(0));
|
|
TEST_rctSig_elements(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back()));
|
|
TEST_rctSig_elements(ecdhInfo_too_few, sig.ecdhInfo.pop_back());
|
|
TEST_rctSig_elements(outPk_empty, sig.outPk.resize(0));
|
|
TEST_rctSig_elements(outPk_too_many, sig.outPk.push_back(sig.outPk.back()));
|
|
TEST_rctSig_elements(outPk_too_few, sig.outPk.pop_back());
|
|
|
|
#define TEST_rctSig_elements_simple(name, op) \
|
|
TEST(ringct, rctSig_##name##_simple) \
|
|
{ \
|
|
const uint64_t inputs[] = {1000, 1000}; \
|
|
const uint64_t outputs[] = {1000}; \
|
|
rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000); \
|
|
ASSERT_TRUE(rct::verRctSimple(sig)); \
|
|
op; \
|
|
ASSERT_FALSE(rct::verRctSimple(sig)); \
|
|
}
|
|
|
|
TEST_rctSig_elements_simple(rangeSigs_empty, sig.p.rangeSigs.resize(0));
|
|
TEST_rctSig_elements_simple(rangeSigs_too_many, sig.p.rangeSigs.push_back(sig.p.rangeSigs.back()));
|
|
TEST_rctSig_elements_simple(rangeSigs_too_few, sig.p.rangeSigs.pop_back());
|
|
TEST_rctSig_elements_simple(mgSig_empty, sig.p.MGs.resize(0));
|
|
TEST_rctSig_elements_simple(mgSig_too_many, sig.p.MGs.push_back(sig.p.MGs.back()));
|
|
TEST_rctSig_elements_simple(mgSig_too_few, sig.p.MGs.pop_back());
|
|
TEST_rctSig_elements_simple(mgSig0_ss_empty, sig.p.MGs[0].ss.resize(0));
|
|
TEST_rctSig_elements_simple(mgSig0_ss_too_many, sig.p.MGs[0].ss.push_back(sig.p.MGs[0].ss.back()));
|
|
TEST_rctSig_elements_simple(mgSig0_ss_too_few, sig.p.MGs[0].ss.pop_back());
|
|
TEST_rctSig_elements_simple(mgSig_ss0_empty, sig.p.MGs[0].ss[0].resize(0));
|
|
TEST_rctSig_elements_simple(mgSig_ss0_too_many, sig.p.MGs[0].ss[0].push_back(sig.p.MGs[0].ss[0].back()));
|
|
TEST_rctSig_elements_simple(mgSig_ss0_too_few, sig.p.MGs[0].ss[0].pop_back());
|
|
TEST_rctSig_elements_simple(mgSig0_II_empty, sig.p.MGs[0].II.resize(0));
|
|
TEST_rctSig_elements_simple(mgSig0_II_too_many, sig.p.MGs[0].II.push_back(sig.p.MGs[0].II.back()));
|
|
TEST_rctSig_elements_simple(mgSig0_II_too_few, sig.p.MGs[0].II.pop_back());
|
|
TEST_rctSig_elements_simple(mixRing_empty, sig.mixRing.resize(0));
|
|
TEST_rctSig_elements_simple(mixRing_too_many, sig.mixRing.push_back(sig.mixRing.back()));
|
|
TEST_rctSig_elements_simple(mixRing_too_few, sig.mixRing.pop_back());
|
|
TEST_rctSig_elements_simple(mixRing0_empty, sig.mixRing[0].resize(0));
|
|
TEST_rctSig_elements_simple(mixRing0_too_many, sig.mixRing[0].push_back(sig.mixRing[0].back()));
|
|
TEST_rctSig_elements_simple(mixRing0_too_few, sig.mixRing[0].pop_back());
|
|
TEST_rctSig_elements_simple(pseudoOuts_empty, sig.pseudoOuts.resize(0));
|
|
TEST_rctSig_elements_simple(pseudoOuts_too_many, sig.pseudoOuts.push_back(sig.pseudoOuts.back()));
|
|
TEST_rctSig_elements_simple(pseudoOuts_too_few, sig.pseudoOuts.pop_back());
|
|
TEST_rctSig_elements_simple(ecdhInfo_empty, sig.ecdhInfo.resize(0));
|
|
TEST_rctSig_elements_simple(ecdhInfo_too_many, sig.ecdhInfo.push_back(sig.ecdhInfo.back()));
|
|
TEST_rctSig_elements_simple(ecdhInfo_too_few, sig.ecdhInfo.pop_back());
|
|
TEST_rctSig_elements_simple(outPk_empty, sig.outPk.resize(0));
|
|
TEST_rctSig_elements_simple(outPk_too_many, sig.outPk.push_back(sig.outPk.back()));
|
|
TEST_rctSig_elements_simple(outPk_too_few, sig.outPk.pop_back());
|
|
|
|
TEST(ringct, reject_gen_simple_ver_non_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1000};
|
|
rct::rctSig sig = make_sample_simple_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, 1000);
|
|
ASSERT_FALSE(rct::verRct(sig));
|
|
}
|
|
|
|
TEST(ringct, reject_gen_non_simple_ver_simple)
|
|
{
|
|
const uint64_t inputs[] = {1000, 1000};
|
|
const uint64_t outputs[] = {1000, 1000};
|
|
rct::rctSig sig = make_sample_rct_sig(NELTS(inputs), inputs, NELTS(outputs), outputs, true);
|
|
ASSERT_FALSE(rct::verRctSimple(sig));
|
|
}
|
|
|
|
TEST(ringct, key_ostream)
|
|
{
|
|
std::stringstream out;
|
|
out << "BEGIN" << rct::H << "END";
|
|
EXPECT_EQ(
|
|
std::string{"BEGIN<8b655970153799af2aeadc9ff1add0ea6c7251d54154cfa92c173a0dd39c1f94>END"},
|
|
out.str()
|
|
);
|
|
}
|